有四种类型的znode: PERSISTENT-持久化目录节点 客户端与zookeeper断开连接后,该节点依旧存在 PERSISTENT_SEQUENTIAL-持久化顺序编号目录节点 客户端与zookeeper断开连接后,该节点依旧存在,只是Zookeeper给该节点名称进行顺序编号 EPHEMERAL-临时目录节点 客户端与zookeeper断开连接后,该节点被删除 EPHEMERAL_SEQ
3.7. 进一步学习 开始阅读 Go语言入门 教程。 参考 Wiki Codelab 编写一个web程序。 阅读 Effective Go 阅读 Go语言文档
1. 浏览器选择 所有章节中的例子都基于 Chrome 浏览器环境。 推荐读者也使用 Chrome 进行调试学习,保证所有案例效果统一。 同时 Chrome 也是所有主流浏览器中支持 JavaScript 特性较多的、速度相对较快的浏览器。 获取Chrome浏览器 Chrome 浏览器 2. 开发工具 开发工具一般会分为两种,一种为 IDE (Integrated Development Envi
TensorBoard 涉及到的运算,通常是在训练庞大的深度神经网络中出现的复杂而又难以理解的运算。 为了更方便 TensorFlow 程序的理解、调试与优化,我们发布了一套叫做 TensorBoard 的可视化工具。你可以用 TensorBoard 来展现你的 TensorFlow 图像,绘制图像生成的定量指标图以及附加数据。 当 TensorBoard 设置完成后,它应该是这样子的: 数据序列
Temporal-difference (TD) learning可以说是增强学习的中心,它集成了蒙特卡洛思想和动态编程(dynamic programming, DP)思想,像蒙特卡洛方法一样,TD 方法不需要环境的动态模型,直接从经验经历中学习,像 DP 方法一样,TD 方法不需要等到最终的 outcome 才更新模型,它可以基于其他估计值来更新估计值。 1、TD Prediction TD
强化学习(RL)如今是机器学习的一大令人激动的领域,也是最老的领域之一。自从 1950 年被发明出来后,它被用于一些有趣的应用,尤其是在游戏(例如 TD-Gammon,一个西洋双陆棋程序)和机器控制领域,但是从未弄出什么大新闻。直到 2013 年一个革命性的发展:来自英国的研究者发起了 Deepmind 项目,这个项目可以学习去玩任何从头开始的 Atari 游戏,在多数游戏中,比人类玩的还好,它仅
强化学习(RL)如今是机器学习的一大令人激动的领域,当然之前也是。自从 1950 年被发明出来后,它在这些年产生了一些有趣的应用,尤其是在游戏(例如 TD-Gammon,一个西洋双陆棋程序)和及其控制领域,但是从未弄出什么大新闻。直到 2013 年一个革命性的发展:来自英国的研究者发起了一项 Deepmind 项目,这个项目可以学习去玩任何从头开始的 Atari 游戏,甚至多数比人类玩的还要好,它
我们在查看vue-js的文档的时候,会发现它跟我们真正使用的项目的代码完全不一样。 例如,vuejs的官方文档的讲解,都是这样: (完全是把所有代码都写在了js中) var Child = { template: ' A custom component! ' } new Vue({ // ... components: { // 将只在父模板可用 'my-compo
问题列表 《深度学习》 8.4 参数初始化策略 一般总是使用服从(截断)高斯或均匀分布的随机值,具体是高斯还是均匀分布影响不大,但是也没有详细的研究。 但是,初始值的大小会对优化结果和网络的泛化能力产生较大的影响。 一些启发式初始化策略通常是根据输入与输出的单元数来决定初始权重的大小,比如 Glorot and Bengio (2010) 中建议建议使用的标准初始化,其中 m 为输入数,n 为输出
加速训练的方法 内部方法 网络结构 比如 CNN 与 RNN,前者更适合并行架构 优化算法的改进:动量、自适应学习率 ./专题-优化算法 减少参数规模 比如使用 GRU 代替 LSTM 参数初始化 Batch Normalization 外部方法 深度学习训练加速方法 - CSDN博客 GPU 加速 数据并行 模型并行 混合数据并行与模型并行 CPU 集群 GPU 集群
相关专题 《深度学习》整理 CNN 专题 RNN 专题 优化算法专题 随机梯度下降 动量算法 自适应学习率算法 基于二阶梯度的优化算法 《深度学习》 5.2 容量、过拟合和欠拟合 欠拟合指模型不能在训练集上获得足够低的训练误差; 过拟合指模型的训练误差与测试误差(泛化误差)之间差距过大; 反映在评价指标上,就是模型在训练集上表现良好,但是在测试集和新数据上表现一般(泛化能力差); 降低过拟合风险的
Index 基本遵从《统计学习方法》一书中的符号表示。 除特别说明,默认w为行向量,x为列向量,以避免在wx 中使用转置符号;但有些公式为了更清晰区分向量与标量,依然会使用^T的上标,注意区分。 输入实例x的特征向量记为: 注意:x_i 和 x^(i) 含义不同,前者表示训练集中第 i 个实例,后者表示特征向量中的第 i 个分量;因此,通常记训练集为: 特征向量用小n表示维数,训练集用大N表示个数
Reference CS229 课程讲义(中文) - Kivy-CN - GitHub 超参数选择 Grid Search 网格搜索 在高维空间中对一定区域进行遍历 Random Search 在高维空间中随机选择若干超参数 相关库(未使用) Hyperopt 用于超参数优化的 Python 库,其内部使用 Parzen 估计器的树来预测哪组超参数可能会得到好的结果。 GitHub - https
偏差与方差 《机器学习》 2.5 偏差与方差 - 周志华 偏差与方差分别是用于衡量一个模型泛化误差的两个方面; 模型的偏差,指的是模型预测的期望值与真实值之间的差; 模型的方差,指的是模型预测的期望值与预测值之间的差平方和; 在监督学习中,模型的泛化误差可分解为偏差、方差与噪声之和。 偏差用于描述模型的拟合能力; 方差用于描述模型的稳定性。 导致偏差和方差的原因 偏差通常是由于我们对学习算法做了错
机器学习 概述 机器学习(Machine Learning,ML) 是使用计算机来彰显数据背后的真实含义,它为了把无序的数据转换成有用的信息。是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。 它是人工智能的核心,是使计算机具有智能的根本途径,其应用遍及