我对spark有疑问:HDFS块vs集群核心vs rdd分区。 假设我正在尝试在HDFS中处理一个文件(例如块大小为64MB,文件为6400MB)。所以理想情况下它确实有100个分裂。 我的集群总共有 200 个核心,我提交了包含 25 个执行程序的作业,每个执行程序有 4 个核心(意味着可以运行 100 个并行任务)。 简而言之,我在rdd中默认有100个分区,100个内核将运行。 这是一个好方
我通过指定分区的数量从文本文件创建RDD(Spark 1.6)。但它给我的分区数与指定的分区数不同。 案例1 案例2 案例3 案例4 文件/home/pvikash/data/test的内容。txt是: 这是一个测试文件。将用于rdd分区 基于以上案例,我有几个问题。 对于案例2,显式指定的分区数为0,但实际分区数为1(即使默认最小分区为2),为什么实际分区数为1? 对于案例3,为什么在指定数量的
我正在使用Cloudera VM,一个linux终端和火花版本1.6.0 假设我有以下数据集: 优先级、数量、销售额= 最低价,6,261.54 高,44,1012 低,1,240 高,252500 我可以加载," val input file = sc . textfile(" file:///home/cloud era/stat . txt ") 我可以排序,"inputFile.sort(
我在火花变换函数中有一个简单的问题。 coalesce(numPartitions) - 将 RDD 中的分区数减少到 numPartitions。可用于在筛选大型数据集后更有效地运行操作。 我的问题是 > < Li > < p > coalesce(num partitions)真的会从filterRDD中删除空分区吗? coalesce(numPartitions)是否经历了洗牌?
当我尝试将数据帧写入Hive Parket分区表时 它将在HDFS中创建大量块,每个块只有少量数据。 我了解它是如何进行的,因为每个 spark 子任务将创建一个块,然后将数据写入其中。 我也理解,块数会提高Hadoop的性能,但达到阈值后也会降低性能。 如果我想自动设置数字分区,有人有一个好主意吗?
业务案例是,我们希望通过一个列作为分区,将一个大的拼花文件分割成多个小文件。我们已经使用data frame . partition(“XXX”)进行了测试。写(...).用了大约1个小时,记录了10万个条目。因此,我们将使用map reduce在不同的文件夹中生成不同的拼花文件。示例代码: 上面的例子只是生成一个文本文件,如何用multipleoutputformat生成一个parquet文件?
我是Spark的新手。我尝试在本地模式(windows)下使用spark java将csv文件保存为parquet。我得到了这个错误。 原因:org.apache.spark.Spark异常:写入行时任务失败 我引用了其他线程并禁用了spark推测 set("spark.speculation "," false ") 我还是会出错。我在csv中只使用了两个专栏进行测试。 输入: 我的代码: 请帮
我们开始在团队中尝试spark。在我们减少spark中的工作后,我们希望将结果写入S3,但是我们希望避免收集Spark结果。目前,我们正在为RDD的每个分区写文件,但是这会产生很多小文件。我们希望能够将数据聚合到几个文件中,这些文件按照写入文件的对象数量进行分区。例如,我们的总数据是100万个对象(这是不变的),我们希望生成40万个对象文件,而我们当前的分区生成大约2万个对象文件(这因每个作业而异
我提出了一个关于Spark的非常愚蠢的问题,因为我想澄清我的困惑。我对Spark非常陌生,仍在努力理解它在内部是如何工作的。 比方说,如果我有一个输入文件列表(假设1000),我想在某个地方处理或写入,并且我想使用coalesce将我的分区数减少到100。 现在我用12个执行器运行这个作业,每个执行器有5个内核,这意味着它运行时有60个任务。这是否意味着,每个任务将在一个单独的分区上独立工作? 回
场景: Kafka- 每个火花流微批次中的逻辑(30秒):< br >读取Json- 我的流媒体工作是阅读大约1000个Kafka主题,大约有10K个Kafkapartitions,吞吐量大约为500万事件/秒。 问题来自 Kafka 分区之间的流量负载不均匀,一些分区的吞吐量大约是较小分区的 50 倍,这会导致 RDD 分区倾斜(因为 KafkaUtils 创建了从 Kafka 分区到 Spar
我在任何地方都找不到如何在RDD内部执行重新分区?我知道您可以在RDD上调用重新分区方法来增加分区数量,但它是如何在内部执行的呢? 假设,最初有5个分区,他们有- 第一个分区 - 100 个元素 第二个分区 - 200 个元素 第 3 个分区 - 500 个元素 第 4 个分区 - 5000 个元素 第 5 分区 - 200 个元素 一些分区是倾斜的,因为它们是从HBase加载的,并且数据没有正确
我正在使用的,并将其调用为 。 的方差非常高,以至于大约1%的对集(用百分位数方法验证)使得集合中的值总数的20%。如果Spark随机使用shuffle进行分区,那么很有可能会有1%的数据落入同一分区,从而导致工作人员之间的负载不平衡。 有没有办法确保“重”元组在分区中正常分布?我实际上将分成两个分区,和,基于) 给出的 阈值,以便分离这组元组,然后重新分区。 但获得几乎相同的运行时间。负载可能已
如果有人能用简单的术语回答这些与火花洗牌相关的问题,我将不胜感激。 在spark中,当加载一个数据集时,我们指定分区的数量,这表示输入数据(RDD)应该被划分为多少个块,并且根据分区的数量启动相等数量的任务(如果假设错误,请纠正我)。对于工作节点中的X个核心数。一次运行相应的X个任务。 沿着类似的思路,这里有几个问题。 因为,所有byKey操作以及联合、重新分区、连接和共组都会导致数据混乱。 >
我在cassandra中有一个表,其中日期不是分区键的一部分,但它是聚类键的一部分。在读取火花中的表时,我正在应用日期过滤器,它正在向下推送。我想了解下推是如何工作的,因为通过cql,我们不能直接查询集群键。数据是否在某处被过滤? Java实施: 物理平面图显示为 类型,那么即使date是分区键的一部分,也不会推送过滤器。我不得不把它写成< code>transactions.filter("da
假设我有一个scala类的五个对象,我需要用五个对象构建一个spark RDD,并将该RDD推到cassandra表中,我的cassandr表“person”有三个字段(pId、pName、pAge)和 我如何形成这三个对象的rdd?下面的行可能吗? 如果可以制作RDD..如何将该RDD推送到Cassandra表以在该表“person”中插入三行