我有一个df,看起来像:
作为pd进口熊猫
df = pd.DataFrame({'car_id':[01,02,03,04,05],
'crash_severinity' :[unknown, possible injury,not injury,possible injury, unknown]})
df
df
df = pd.DataFrame({'car_id':[01,02,03,04,05],
'unknown' :[1,0,0,0,1],
'possible injury' :[0,1,0,1,0]
'not injury:[0,0,1,0,0]})
这就是你要找的:
df = pd.get_dummies(df)
输出为:
crash_severity_not injured crash_severity_possible injury crash_severity_unknown
0 0 0 1
1 0 1 0
2 1 0 0
3 0 1 0
4 0 0 1
问题内容: 我有一个如下所示的df: 我正在尝试创建一个如下所示的df: 我试过了 但这不是我要寻找的。 任何指导表示赞赏 问题答案: 那不是新的专栏,而是新的DataFrame: 要获得想要的结果,请使用: 要获得“新列”,您可以使用transform: 我建议阅读docs的split- apply-combine部分 。
我有这个原始数据帧: > 可能有多行具有相同的日期时间,如示例所示。 列< code>column中可能不止有两个不同的值,这是一个简化的示例。 所有值都是整数。 我想创建这个新的数据框: 需要采取的行动: > 对于列<code>列<code>中的每个唯一值,创建一个新列,该值作为列的名称。 对于每个唯一的日期时间,创建一个新行。 根据原始列填充值,如果没有值,则使用 NaN。 创建原始数据帧的代
问题内容: 我有一个看起来像这样的DataFrame: 我想将其转换为对属于某些bin的视图进行计数,如下所示: 我试过了: 但它仅提供汇总计数,而不提供用户计数。如何获得用户的垃圾箱计数? 总计计数(使用我的真实数据)如下所示: 问题答案: 您可以按垃圾箱 和 用户名分组,计算分组大小,然后使用:
我有一个这样的数据帧: 我想知道我们如何使用GROUPBY实现相同的结果? 感谢帮助。 类似的问题: Pandas列值到列?
我想通过对两个现有列应用函数,在数据框中创建一个新列。根据这个答案,当我只需要一列作为参数时,我就能够创建一个新列: 但是,当函数需要多个参数时,我不知道如何执行相同的操作。例如,如何通过将列a和列B传递给下面的函数来创建新列?
基于dataframe列val_1值,查看其他列col_0-10标签前缀,然后创建另一列Mycl。 数据帧看起来像: 应用逻辑后所需的数据帧: 我是trid,但这不起作用:df['mycol']=df['col'df['val_1']。aType(str)] DDL生成DataFrame: 谢谢!