当前位置: 首页 > 知识库问答 >
问题:

马克斯和敏在熊猫Groupby约会

金钊
2023-03-14

我有一个数据帧,看起来像:

data = {'index': ['2014-06-22 10:46:00', '2014-06-24 19:52:00', '2014-06-25 17:02:00', '2014-06-25 17:55:00', '2014-07-02 11:36:00', '2014-07-06 12:40:00', '2014-07-05 12:46:00', '2014-07-27 15:12:00'],
    'type': ['A', 'B', 'C', 'A', 'B', 'C', 'A', 'C'],
    'sum_col': [1, 2, 3, 1, 1, 3, 2, 1]}
df = pd.DataFrame(data, columns=['index', 'type', 'sum_col'])
df['index'] = pd.to_datetime(df['index'])
df = df.set_index('index')
df['weekofyear'] = df.index.weekofyear
df['date'] = df.index.date
df['date'] = pd.to_datetime(df['date'])



                     type sum_col weekofyear   date
index               
2014-06-22 10:46:00    A    1       25      2014-06-22
2014-06-24 19:52:00    B    2       26      2014-06-24
2014-06-25 17:02:00    C    3       26      2014-06-25
2014-06-25 17:55:00    A    1       26      2014-06-25
2014-07-02 11:36:00    B    1       27      2014-07-02
2014-07-06 12:40:00    C    3       27      2014-07-06
2014-07-05 12:46:00    A    2       27      2014-07-05
2014-07-27 15:12:00    C    1       30      2014-07-27

我希望按周分组,然后汇总总数。此外,我需要找到一周的最早日期和最晚日期。第一部分相当简单:

gb = df.groupby(['type', 'weekofyear'])
gb['sum_col'].agg({'sum_col' : np.sum})

我试图找到最小/最大日期,但没有成功:

gb = df.groupby(['type', 'weekofyear'])
gb.agg({'sum_col' : np.sum,
        'date' : np.min,
        'date' : np.max})

如何找到出现的最早/最晚日期?

共有2个答案

徐昆
2023-03-14

简单的代码可以是

df.groupby([key_field]).agg({'time_field': [np.min,np.max]})

这里的key_字段可以是event_id,time_字段可以是timestamp字段。

束高雅
2023-03-14

您需要组合应用于同一列的函数,如下所示:

In [116]: gb.agg({'sum_col' : np.sum,
     ...:         'date' : [np.min, np.max]})
Out[116]: 
                      date             sum_col
                      amin       amax      sum
type weekofyear                               
A    25         2014-06-22 2014-06-22        1
     26         2014-06-25 2014-06-25        1
     27         2014-07-05 2014-07-05        2
B    26         2014-06-24 2014-06-24        2
     27         2014-07-02 2014-07-02        1
C    26         2014-06-25 2014-06-25        3
     27         2014-07-06 2014-07-06        3
     30         2014-07-27 2014-07-27        1
 类似资料:
  • 我必须根据以下col1、col2和loc的数据进行分组,并计算col3中的项数。此外,还应考虑开始和结束日期,即日期应在2021 1月1日至2021 1月31日之间。最终结果应显示在col4中。 数据 预期输出

  • 问题内容: 我有一个包含以下信息的数据框: 我想根据索引插入数据帧中的值, 但仅在每个文件组中 。 插值,我通常会做 和我一起做 我希望插入的数据帧看起来像这样: NaN仍然存在于t = 6的位置,因为它们是file2组中的第一项。 我怀疑我需要使用“应用”,但是还无法确切地知道如何… 任何帮助,将不胜感激。 问题答案:

  • 问题内容: 我有一个数据框df,有两列,我想按一列分组并加入属于同一组的列表,例如: 处理后: 我想保留所有重复项。我有以下问题: 数据框的dtype是对象。convert_objects()不会自动将column_b转换为列表。我怎样才能做到这一点? df.groupby(…)。apply(lambda x:…)中的函数适用于什么?x的形式是什么?清单? 我主要问题的解决方案? 提前致谢。 问题

  • 问题内容: 我经常使用pandas groupby生成堆积表。但是然后我经常想将生成的嵌套关系输出到json。有什么方法可以从生成的堆叠表中提取嵌套的json文件吗? 假设我有一个df,例如: 我可以: 美丽!当然,我真正想做的是通过命令沿着grouped.to_json嵌套嵌套的json。但是该功能不可用。任何解决方法? 所以,我真正想要的是这样的: 唐 问题答案: 我认为熊猫没有内置任何东西可

  • 问题内容: 我在csv文件中有这样的数据 我可以像这样阅读和分组 我懂了 我希望这个(顺序无所谓) 我想知道是否有可能算零次 问题答案: 你可以用与: 如果您需要使用输出:

  • 问题内容: 所以我有一个数据框df1,看起来像下面的样子: 我想按A列分组,然后对B列求和,同时将值保留在C列中。 问题是,当我说df.groupby(’A’)。sum()列C被删除时,返回 当我进行分组和求和时,如何解决这个问题并保留C列? 问题答案: 唯一的方法是将C包含在groupby中(groupby函数可以接受列表)。 试试看: 需要注意的另一件事是,如果需要在聚合后使用df,则还可以使