我正在制作一个Three.js图,它基本上代表了二维平面中的一堆图像。
现在,单个图像是每个32px×32px更大的2048px×2048px图像图集文件的片段。当用户放大到场景的特定区域时,我想增加这些单个图像的大小。例如,如果用户开始放大空间最右边区域的图像,我计划用具有相同内容的64px x 64px图像更新该区域中的32px x 32px单个图像(以显示更多细节)。
我的问题是:这三个是什么。如何实现这一目标?
我的计划是加载更高分辨率的资产,将它们映射到适当的几何坐标,然后简单地删除具有32px子图像的旧网格,并添加具有64px子图像的新网格。我最初认为我可以为现存的几何体更新纹理/材质,但是我已经读到,一个人不应该使用2048px大于2048px的纹理,并且一个有n个点的几何体不允许我在不超越的情况下不断提高该几何体中图像的保真度最大纹理大小。
我将非常感谢hree.js退伍军人能够提供的关于他们将如何完成这项任务的任何见解!
完整代码:
/**
* Globals
**/
// Identify data endpoint
var dataUrl = 'https://s3.amazonaws.com/duhaime/blog/tsne-webgl/data/';
// Create global stores for image and atlas sizes
var image, atlas;
// Create a store for image position information
var imagePositions = null;
// Create a store for the load progress. Data structure:
// {atlas0: percentLoaded, atlas1: percentLoaded}
var loadProgress = {};
// Create a store for the image atlas materials. Data structure:
// {subImageSize: {atlas0: material, atlas1: material}}
var materials = {32: {}, 64: {}};
// Create a store for meshes
var meshes = [];
/**
* Create Scene
**/
// Create the scene and a camera to view it
var scene = new THREE.Scene();
/**
* Camera
**/
// Specify the portion of the scene visiable at any time (in degrees)
var fieldOfView = 75;
// Specify the camera's aspect ratio
var aspectRatio = window.innerWidth / window.innerHeight;
/*
Specify the near and far clipping planes. Only objects
between those planes will be rendered in the scene
(these values help control the number of items rendered
at any given time)
*/
var nearPlane = 100;
var farPlane = 50000;
// Use the values specified above to create a camera
var camera = new THREE.PerspectiveCamera(
fieldOfView, aspectRatio, nearPlane, farPlane
);
// Finally, set the camera's position
camera.position.z = 12000;
camera.position.y = -2000;
/**
* Lights
**/
// Add a point light with #fff color, .7 intensity, and 0 distance
var light = new THREE.PointLight( 0xffffff, 1, 0 );
// Specify the light's position
light.position.set( 1, 1, 100 );
// Add the light to the scene
scene.add(light)
/**
* Renderer
**/
// Create the canvas with a renderer
var renderer = new THREE.WebGLRenderer({ antialias: true });
// Add support for retina displays
renderer.setPixelRatio( window.devicePixelRatio );
// Specify the size of the canvas
renderer.setSize( window.innerWidth, window.innerHeight );
// Add the canvas to the DOM
document.body.appendChild( renderer.domElement );
/**
* Load External Data
**/
// Load the image position JSON file
var fileLoader = new THREE.FileLoader();
var url = dataUrl + 'image_tsne_projections.json';
fileLoader.load(url, function(data) {
imagePositions = JSON.parse(data);
conditionallyBuildGeometries(32)
})
/**
* Load Atlas Textures
**/
// List of all textures to be loaded, the size of subimages
// in each, and the total count of atlas files for each size
var textureSets = {
32: { size: 32, count: 5 },
64: { size: 64, count: 20 }
}
// Create a texture loader so we can load our image files
var textureLoader = new AjaxTextureLoader();
function loadTextures(size, onProgress) {
setImageAndAtlasSize(size)
for (var i=0; i<textureSets[size].count; i++) {
var url = dataUrl + 'atlas_files/' + size + 'px/atlas-' + i + '.jpg';
if (onProgress) {
textureLoader.load(url,
handleTexture.bind(null, size, i),
onProgress.bind(null, size, i));
} else {
textureLoader.load(url, handleTexture.bind(null, size, i));
}
}
}
function handleProgress(size, idx, xhr) {
loadProgress[idx] = xhr.loaded / xhr.total;
var sum = 0;
Object.keys(loadProgress).forEach(function(k) { sum += loadProgress[k]; })
var progress = sum/textureSets[size].count;
var loader = document.querySelector('#loader');
progress < 1
? loader.innerHTML = parseInt(progress * 100) + '%'
: loader.style.display = 'none';
}
// Create a material from the new texture and call
// the geometry builder if all textures have loaded
function handleTexture(size, idx, texture) {
var material = new THREE.MeshBasicMaterial({ map: texture });
materials[size][idx] = material;
conditionallyBuildGeometries(size, idx)
}
// If the textures and the mapping from image idx to positional information
// are all loaded, create the geometries
function conditionallyBuildGeometries(size, idx) {
if (size === 32) {
var nLoaded = Object.keys(materials[size]).length;
var nRequired = textureSets[size].count;
if (nLoaded === nRequired && imagePositions) {
// Add the low-res textures and load the high-res textures
buildGeometry(size);
loadTextures(64)
}
} else {
// Add the new high-res texture to the scene
updateMesh(size, idx)
}
}
loadTextures(32, handleProgress)
/**
* Build Image Geometry
**/
// Iterate over the textures in the current texture set
// and for each, add a new mesh to the scene
function buildGeometry(size) {
for (var i=0; i<textureSets[size].count; i++) {
// Create one new geometry per set of 1024 images
var geometry = new THREE.Geometry();
geometry.faceVertexUvs[0] = [];
for (var j=0; j<atlas.cols*atlas.rows; j++) {
var coords = getCoords(i, j);
geometry = updateVertices(geometry, coords);
geometry = updateFaces(geometry);
geometry = updateFaceVertexUvs(geometry, j);
if ((j+1)%1024 === 0) {
var idx = (i*textureSets[size].count) + j;
buildMesh(geometry, materials[size][i], idx);
var geometry = new THREE.Geometry();
}
}
}
}
// Get the x, y, z coords for the subimage at index position j
// of atlas in index position i
function getCoords(i, j) {
var idx = (i * atlas.rows * atlas.cols) + j;
var coords = imagePositions[idx];
coords.x *= 2200;
coords.y *= 1200;
coords.z = (-200 + j/10);
return coords;
}
// Add one vertex for each corner of the image, using the
// following order: lower left, lower right, upper right, upper left
function updateVertices(geometry, coords) {
// Retrieve the x, y, z coords for this subimage
geometry.vertices.push(
new THREE.Vector3(
coords.x,
coords.y,
coords.z
),
new THREE.Vector3(
coords.x + image.shownWidth,
coords.y,
coords.z
),
new THREE.Vector3(
coords.x + image.shownWidth,
coords.y + image.shownHeight,
coords.z
),
new THREE.Vector3(
coords.x,
coords.y + image.shownHeight,
coords.z
)
);
return geometry;
}
// Create two new faces for a given subimage, then add those
// faces to the geometry
function updateFaces(geometry) {
// Add the first face (the lower-right triangle)
var faceOne = new THREE.Face3(
geometry.vertices.length-4,
geometry.vertices.length-3,
geometry.vertices.length-2
)
// Add the second face (the upper-left triangle)
var faceTwo = new THREE.Face3(
geometry.vertices.length-4,
geometry.vertices.length-2,
geometry.vertices.length-1
)
// Add those faces to the geometry
geometry.faces.push(faceOne, faceTwo);
return geometry;
}
function updateFaceVertexUvs(geometry, j) {
// Identify the relative width and height of the subimages
// within the image atlas
var relativeW = image.width / atlas.width;
var relativeH = image.height / atlas.height;
// Identify this subimage's offset in the x dimension
// An xOffset of 0 means the subimage starts flush with
// the left-hand edge of the atlas
var xOffset = (j % atlas.cols) * relativeW;
// Identify this subimage's offset in the y dimension
// A yOffset of 0 means the subimage starts flush with
// the bottom edge of the atlas
var yOffset = 1 - (Math.floor(j/atlas.cols) * relativeH) - relativeH;
// Determine the faceVertexUvs index position
var faceIdx = 2 * (j%1024);
// Use the xOffset and yOffset (and the knowledge that
// each row and column contains only 32 images) to specify
// the regions of the current image. Use .set() if the given
// faceVertex is already defined, due to a bug in updateVertexUvs:
// https://github.com/mrdoob/three.js/issues/7179
if (geometry.faceVertexUvs[0][faceIdx]) {
geometry.faceVertexUvs[0][faceIdx][0].set(xOffset, yOffset)
geometry.faceVertexUvs[0][faceIdx][1].set(xOffset + relativeW, yOffset)
geometry.faceVertexUvs[0][faceIdx][2].set(xOffset + relativeW, yOffset + relativeH)
} else {
geometry.faceVertexUvs[0][faceIdx] = [
new THREE.Vector2(xOffset, yOffset),
new THREE.Vector2(xOffset + relativeW, yOffset),
new THREE.Vector2(xOffset + relativeW, yOffset + relativeH)
]
}
// Map the region of the image described by the lower-left,
// upper-right, and upper-left vertices to `faceTwo`
if (geometry.faceVertexUvs[0][faceIdx+1]) {
geometry.faceVertexUvs[0][faceIdx+1][0].set(xOffset, yOffset)
geometry.faceVertexUvs[0][faceIdx+1][1].set(xOffset + relativeW, yOffset + relativeH)
geometry.faceVertexUvs[0][faceIdx+1][2].set(xOffset, yOffset + relativeH)
} else {
geometry.faceVertexUvs[0][faceIdx+1] = [
new THREE.Vector2(xOffset, yOffset),
new THREE.Vector2(xOffset + relativeW, yOffset + relativeH),
new THREE.Vector2(xOffset, yOffset + relativeH)
]
}
return geometry;
}
function buildMesh(geometry, material, idx) {
// Convert the geometry to a BuferGeometry for additional performance
//var geometry = new THREE.BufferGeometry().fromGeometry(geometry);
// Combine the image geometry and material into a mesh
var mesh = new THREE.Mesh(geometry, material);
// Store this image's index position in the mesh
mesh.userData.idx = idx;
// Set the position of the image mesh in the x,y,z dimensions
mesh.position.set(0,0,0)
// Add the image to the scene
scene.add(mesh);
// Save this mesh
meshes.push(mesh);
return mesh;
}
/**
* Update Geometries with new VertexUvs and materials
**/
function updateMesh(size, idx) {
// Update the appropriate material
meshes[idx].material = materials[size][idx];
meshes[idx].material.needsUpdate = true;
// Update the facevertexuvs
for (var j=0; j<atlas.cols*atlas.rows; j++) {
meshes[idx].geometry = updateFaceVertexUvs(meshes[idx].geometry, j);
}
meshes[idx].geometry.uvsNeedUpdate = true;
meshes[idx].geometry.verticesNeedUpdate = true;
}
/**
* Helpers
**/
function setImageAndAtlasSize(size) {
// Identify the subimage size in px (width/height) and the
// size of the image as it will be displayed in the map
image = { width: size, height: size, shownWidth: 64, shownHeight: 64 };
// Identify the total number of cols & rows in the image atlas
atlas = { width: 2048, height: 2048, cols: 2048/size, rows: 2048/size };
}
/**
* Add Controls
**/
var controls = new THREE.TrackballControls(camera, renderer.domElement);
/**
* Add Raycaster
**/
var raycaster = new THREE.Raycaster();
var mouse = new THREE.Vector2();
function onMouseMove( event ) {
// Calculate mouse position in normalized device coordinates
// (-1 to +1) for both components
mouse.x = ( event.clientX / window.innerWidth ) * 2 - 1;
mouse.y = - ( event.clientY / window.innerHeight ) * 2 + 1;
}
function onClick( event ) {
// Determine which image is selected (if any)
var selected = raycaster.intersectObjects( scene.children );
// Intersecting elements are ordered by their distance (increasing)
if (!selected) return;
if (selected.length) {
selected = selected[0];
console.log('clicked', selected.object.userData.idx)
}
}
window.addEventListener('mousemove', onMouseMove)
window.addEventListener('click', onClick)
/**
* Handle window resizes
**/
window.addEventListener('resize', function() {
camera.aspect = window.innerWidth / window.innerHeight;
camera.updateProjectionMatrix();
renderer.setSize( window.innerWidth, window.innerHeight );
controls.handleResize();
});
/**
* Render!
**/
// The main animation function that re-renders the scene each animation frame
function animate() {
requestAnimationFrame( animate );
raycaster.setFromCamera( mouse, camera );
renderer.render( scene, camera );
controls.update();
}
animate();
* {
margin: 0;
padding: 0;
background: #000;
color: #fff;
}
<script src="https://cdnjs.cloudflare.com/ajax/libs/three.js/88/three.min.js"></script>
<script src="https://s3.amazonaws.com/duhaime/blog/tsne-webgl/assets/js/texture-loader.js"></script>
<script src="https://s3.amazonaws.com/duhaime/blog/tsne-webgl/assets/js/trackball-controls.js"></script>
<div id='loader'>0%</div>
也许你可以用三人行。它基本上允许您为一系列距离定义不同的网格。网格将是相同的四边形,但你可以改变他们的材料使用不同的纹理...下面是THREE. js Web中的LOD示例。
希望有帮助!!
您可以潜在地使用多材料和几何组(或者在您的情况下,材料索引)。
这取决于纹理尺寸缩放1::1。换句话说,如果您的第一个分辨率是维度32x64
,则该分辨率的两倍应该是维度64x128
。UV是基于百分比的,因此从一个分辨率的图像移动到另一个分辨率的相同图像“非常有效”。
此时,您实际上只需要更改纹理图像源。但听起来你不想这么做。因此,我们需要一次将所有纹理指定给相同的网格。三js让这变得非常简单。。。
var myMesh = new THREE.Mesh(myGeometry, [ material1, material2, material3 ]);
请注意,材料参数被定义为一个数组。每种材料都有不同的纹理,在您的情况下是不同的分辨率图像。
现在,调试到
网格中。在
goetry
属性下,您将看到一个名为faces
的a属性,它是Face3
对象的数组。每个面都有一个名为materialIndex
的属性。这是面对材质阵列的引用。
当您到达想要触发更改的点时(例如您的相机距离网格有一定距离),您可以更改材质索引,然后触发网格以更改其材质:
var distance = camera.position.distanceTo(myMesh.position);
if(distance < 50){
myMesh.faces.forEach(function(face){
face.materialIndex = 2;
});
}
else if(distance => 50 && distance < 100){
myMesh.faces.forEach(function(face){
face.materialIndex = 1;
});
}
else{
myMesh.faces.forEach(function(face){
face.materialIndex = 0;
});
}
myMesh.groupsNeedUpdate = true;
最后一行(
myMesh.groupsNeedUpdate=true;
)告诉渲染器材质索引发生了变化,因此需要更新渲染的材质。
好的,这里有一个奇怪的问题,我有问题(用gcc btw编译) 下面是用于命令提示的Mandelbrot分形生成器的源代码。我以前做过这项工作,我想加快自己的测试速度,看看我能以多快的速度生成命令提示符中实际生成Mandelbrot分形所需的代码。我经常这样做是为了给自己找点乐子 不管怎样,我遇到了一个新问题,我不太明白问题是什么。当分形呈现时,无论我设置了多少次迭代或什么转义值,它都将始终显示为椭
问题内容: 我想用Java模拟TCP。 为此,我有多个线程,例如每个TCP连接的发送者和接收者线程。 我的问题是,我想暂停(如Thread.sleep())线程数微秒的时间间隔。这样我就可以模拟流控制,发送者线程将在发送下一个数据包之前阻塞几微秒,同时接收和数据处理线程可以使用CPU。但是我找不到任何执行sleep()或wait()的方法来获得微秒或纳秒分辨率。如何以微秒或纳秒分辨率阻塞(暂停)J
我想用Java模拟TCP。 我找到了System.nanotime()方法,但是没有方法可以在指定的微秒或纳秒内阻塞线程。如果有这样的方法,那么请让我知道。system.nanotime()只是给出了以纳秒为单位的相对时间间隔。 我可以使用System.nanotime()在使用busy-loop的线程中执行纳秒级延迟,但这将浪费CPU时间,而CPU本来可以用于接收数据线程或处理线程。 另一个令人
问题内容: 我想提高图像的分辨率。我使用了PDFRenderer-0.9.0 jar。它是从java.net 下载的,用于将PDF页面转换为图像。 我想将46_2.pdf PDF文件转换为image。转换后的46_2.png图像尺寸较小, 所以我想将图像尺寸增加到。 我以前尝试过 PdfBox 将PDF页面转换为PNG图像文件。有个问题。因此,我尝试使用 PdfRenderer 库进行图像转换。
问题内容: 我很难获得较低的屏幕分辨率,因为我的屏幕分辨率为1920x1080。 有谁知道如何获得屏幕分辨率的高度和宽度? 我在1024x768分辨率上检查了我的作品,结果全部乱成一团。 问题答案: 无法从CSS获取屏幕高度。但是,从CSS3开始,您可以使用媒体查询来根据分辨率控制模板的显示。 如果要使用媒体查询基于高度进行编码,则可以定义样式表并像这样调用它。
问题内容: 我已经使用matplotlib绘制了一些实验结果。但是,通过单击图像右侧来保存图片会产生非常差的质量/低分辨率图像。 我正在寻找的示例图:示例图 问题答案: 您可以用来导出到图像文件: 另外,您可以为某些标量值指定参数,例如: