当前位置: 首页 > 知识库问答 >
问题:

无法重新训练实例分段模型

彭嘉赐
2023-03-14

我正在尝试训练实例分割模型。Im使用以下代码生成tfrecord。

flags = tf.app.flags
flags.DEFINE_string('data_dir', '', 'Root directory to raw pet dataset.')
flags.DEFINE_string('output_dir', '', 'Path to directory to output TFRecords.')
flags.DEFINE_string('label_map_path', 'data/pet_label_map.pbtxt',
                    'Path to label map proto')
flags.DEFINE_boolean('faces_only', True, 'If True, generates bounding boxes '
                     'for pet faces.  Otherwise generates bounding boxes (as '
                     'well as segmentations for full pet bodies).  Note that '
                     'in the latter case, the resulting files are much larger.')
flags.DEFINE_string('mask_type', 'png', 'How to represent instance '
                    'segmentation masks. Options are "png" or "numerical".')
FLAGS = flags.FLAGS


def get_class_name_from_filename(file_name):

  match = re.match(r'([A-Za-z_]+)(_[0-9]+\.jpg)', file_name, re.I)
  return match.groups()[0]


def dict_to_tf_example(data,
                       mask_path,
                       label_map_dict,
                       image_subdirectory,
                       ignore_difficult_instances=False,
                       faces_only=True,
                       mask_type='png'):

  img_path = os.path.join(image_subdirectory, data['filename'])
  with tf.gfile.GFile(img_path, 'rb') as fid:
    encoded_jpg = fid.read()
  encoded_jpg_io = io.BytesIO(encoded_jpg)
  image = PIL.Image.open(encoded_jpg_io)
  if image.format != 'JPEG':
    raise ValueError('Image format not JPEG')
  key = hashlib.sha256(encoded_jpg).hexdigest()

  with tf.gfile.GFile(mask_path, 'rb') as fid:
    encoded_mask_png = fid.read()
  encoded_png_io = io.BytesIO(encoded_mask_png)
  mask = PIL.Image.open(encoded_png_io)
  if mask.format != 'PNG':
    raise ValueError('Mask format not PNG')

  mask_np = np.asarray(mask)
  nonbackground_indices_x = np.any(mask_np != 2, axis=0)
  nonbackground_indices_y = np.any(mask_np != 2, axis=1)
  nonzero_x_indices = np.where(nonbackground_indices_x)
  nonzero_y_indices = np.where(nonbackground_indices_y)

  width = int(data['size']['width'])
  height = int(data['size']['height'])

  xmins = []
  ymins = []
  xmaxs = []
  ymaxs = []
  classes = []
  classes_text = []
  truncated = []
  poses = []
  difficult_obj = []
  masks = []
  if 'object' in data:
    for obj in data['object']:
      difficult = bool(int(obj['difficult']))
      if ignore_difficult_instances and difficult:
        continue
      difficult_obj.append(int(difficult))

      if faces_only:
        xmin = float(obj['bndbox']['xmin'])
        xmax = float(obj['bndbox']['xmax'])
        ymin = float(obj['bndbox']['ymin'])
        ymax = float(obj['bndbox']['ymax'])
      else:
        xmin = float(np.min(nonzero_x_indices))
        xmax = float(np.max(nonzero_x_indices))
        ymin = float(np.min(nonzero_y_indices))
        ymax = float(np.max(nonzero_y_indices))

      xmins.append(xmin / width)
      ymins.append(ymin / height)
      xmaxs.append(xmax / width)
      ymaxs.append(ymax / height)
      class_name = get_class_name_from_filename(data['filename'])
      classes_text.append(class_name.encode('utf8'))
      classes.append(label_map_dict[class_name])
      truncated.append(int(obj['truncated']))
      poses.append(obj['pose'].encode('utf8'))
      if not faces_only:
        mask_remapped = (mask_np != 2).astype(np.uint8)
        masks.append(mask_remapped)

  feature_dict = {
      'image/height': dataset_util.int64_feature(height),
      'image/width': dataset_util.int64_feature(width),
      'image/filename': dataset_util.bytes_feature(
          data['filename'].encode('utf8')),
      'image/source_id': dataset_util.bytes_feature(
          data['filename'].encode('utf8')),
      'image/key/sha256': dataset_util.bytes_feature(key.encode('utf8')),
      'image/encoded': dataset_util.bytes_feature(encoded_jpg),
      'image/format': dataset_util.bytes_feature('jpeg'.encode('utf8')),
      'image/object/bbox/xmin': dataset_util.float_list_feature(xmins),
      'image/object/bbox/xmax': dataset_util.float_list_feature(xmaxs),
      'image/object/bbox/ymin': dataset_util.float_list_feature(ymins),
      'image/object/bbox/ymax': dataset_util.float_list_feature(ymaxs),
      'image/object/class/text': dataset_util.bytes_list_feature(classes_text),
      'image/object/class/label': dataset_util.int64_list_feature(classes),
      'image/object/difficult': dataset_util.int64_list_feature(difficult_obj),
      'image/object/truncated': dataset_util.int64_list_feature(truncated),
      'image/object/view': dataset_util.bytes_list_feature(poses),
  }
  if not faces_only:
    if mask_type == 'numerical':
      mask_stack = np.stack(masks).astype(np.float32)
      masks_flattened = np.reshape(mask_stack, [-1])
      feature_dict['image/object/mask'] = (
          dataset_util.float_list_feature(masks_flattened.tolist()))
    elif mask_type == 'png':
      encoded_mask_png_list = []
      for mask in masks:
        img = PIL.Image.fromarray(mask)
        output = io.BytesIO()
        img.save(output, format='PNG')
        encoded_mask_png_list.append(output.getvalue())
      feature_dict['image/object/mask'] = (
          dataset_util.bytes_list_feature(encoded_mask_png_list))

  example = tf.train.Example(features=tf.train.Features(feature=feature_dict))
  return example


def create_tf_record(output_filename,
                     label_map_dict,
                     annotations_dir,
                     image_dir,
                     examples,
                     faces_only=True,
                     mask_type='png'):

  writer = tf.python_io.TFRecordWriter(output_filename)
  for idx, example in enumerate(examples):
    if idx % 100 == 0:
      logging.info('On image %d of %d', idx, len(examples))
    xml_path = os.path.join(annotations_dir, 'xmls', example + '.xml')
    mask_path = os.path.join(annotations_dir, 'trimaps', example + '.png')

    if not os.path.exists(xml_path):
      logging.warning('Could not find %s, ignoring example.', xml_path)
      continue
    with tf.gfile.GFile(xml_path, 'r') as fid:
      xml_str = fid.read()
    xml = etree.fromstring(xml_str)
    data = dataset_util.recursive_parse_xml_to_dict(xml)['annotation']

    try:
      tf_example = dict_to_tf_example(
          data,
          mask_path,
          label_map_dict,
          image_dir,
          faces_only=faces_only,
          mask_type=mask_type)
      writer.write(tf_example.SerializeToString())
    except ValueError:
      logging.warning('Invalid example: %s, ignoring.', xml_path)

  writer.close()


# TODO(derekjchow): Add test for pet/PASCAL main files.
def main(_):
  data_dir = FLAGS.data_dir
  label_map_dict = label_map_util.get_label_map_dict(FLAGS.label_map_path)

  logging.info('Reading from Pet dataset.')
  image_dir = os.path.join(data_dir, 'images')
  annotations_dir = os.path.join(data_dir, 'annotations')
  examples_path = os.path.join(annotations_dir, 'trainval.txt')
  examples_list = dataset_util.read_examples_list(examples_path)

  # Test images are not included in the downloaded data set, so we shall perform
  # our own split.
  random.seed(42)
  random.shuffle(examples_list)
  num_examples = len(examples_list)
  num_train = int(0.7 * num_examples)
  train_examples = examples_list[:num_train]
  val_examples = examples_list[num_train:]
  logging.info('%d training and %d validation examples.',
               len(train_examples), len(val_examples))

  train_output_path = os.path.join(FLAGS.output_dir, 'pet_train.record')
  val_output_path = os.path.join(FLAGS.output_dir, 'pet_val.record')
  if FLAGS.faces_only:
    train_output_path = os.path.join(FLAGS.output_dir,
                                     'pet_train_with_masks.record')
    val_output_path = os.path.join(FLAGS.output_dir,
                                   'pet_val_with_masks.record')
  create_tf_record(
      train_output_path,
      label_map_dict,
      annotations_dir,
      image_dir,
      train_examples,
      faces_only=FLAGS.faces_only,
      mask_type=FLAGS.mask_type)
  create_tf_record(
      val_output_path,
      label_map_dict,
      annotations_dir,
      image_dir,
      val_examples,
      faces_only=FLAGS.faces_only,
      mask_type=FLAGS.mask_type)


if __name__ == '__main__':
  tf.app.run()

我用来训练的数据集有37个带有图像和遮罩的类。数据集在这里

然而,当我尝试训练时,我得到了以下错误。

回溯(最近一次调用last):tf中第167行的文件“train.py”。应用程序。run()文件“/anaconda3/envs/conda/lib/python3.6/site packages/tensorflow/python/platform/app.py”,第126行,在run\u sys中。退出(main(argv))文件“train.py”,第163行,在主工作名中,是标志的主管。train_dir)文件“/Users/Documents/research/models/research/object_detection/trainer.py”,第275行,列车内克隆=模型部署。创建克隆(deploy\u config,model\u fn,[input\u queue])文件“/Users/Documents/research/models/research/research/research/research/models/research/research/research/research/research/research/research/slim/deploy/model\u deploy.py”,第193行,在create\u loss\u dict=detection\u model中。丢失(预测、真实图像、形状)文件“/用户/文档/研究/模型/研究/对象检测/元体系结构/faster\u rcnn\u meta\u arch.py”,第1608行,在丢失地面真相屏蔽列表中,文件“/用户/文档/研究/模型/研究/对象检测/元体系结构/faster\u rcnn\u meta\u arch.py”,第1837行,在“丢失”框中,分类器引发ValueError('未提供Groundtruth实例掩码。'ValueError:未提供Groundtruth实例掩码。请配置

我怎么能整理出来呢?

共有1个答案

祁嘉木
2023-03-14

在我的例子中,创建tf记录是正常的。类似于OP发布的内容。这个问题的解决方案是我需要在pipeline.config文件中添加两行。

train_input_reader {
  label_map_path: "path/to/pbtxt"
  tf_record_input_reader {
    input_path: "path/to/traindata.tfrecord"
  }
  load_instance_masks: true
  mask_type: PNG_MASKS
}

必须将两行load\u instance\u masks:truemask\u type:PNG\u masks添加到train\u input\u reader中。默认情况下,管道中不会出现这种情况。来自model zoo的配置文件。

希望这有帮助。

 类似资料:
  • 本文向大家介绍Pytorch加载部分预训练模型的参数实例,包括了Pytorch加载部分预训练模型的参数实例的使用技巧和注意事项,需要的朋友参考一下 前言 自从从深度学习框架caffe转到Pytorch之后,感觉Pytorch的优点妙不可言,各种设计简洁,方便研究网络结构修改,容易上手,比TensorFlow的臃肿好多了。对于深度学习的初学者,Pytorch值得推荐。今天主要主要谈谈Pytorch是

  • 本文向大家介绍tensorflow 固定部分参数训练,只训练部分参数的实例,包括了tensorflow 固定部分参数训练,只训练部分参数的实例的使用技巧和注意事项,需要的朋友参考一下 在使用tensorflow来训练一个模型的时候,有时候需要依靠验证集来判断模型是否已经过拟合,是否需要停止训练。 1.首先想到的是用tf.placeholder()载入不同的数据来进行计算,比如 这种方式很简单,也很

  • 我试图用下面的代码训练模型,但我一直在方法上收到错误,它告诉我将更改为。为什么?

  • 我想训练用于提取人名的模型(NER系统的一部分),但我想使这个模型无大小写(我的意思是,该模型不会考虑字母大小写,大写字母和小写字母之间没有区别),因为我有嘈杂的文本。 那么训练步骤中是否有任何参数可以做到这一点,或者任何其他方式?

  • 我仍在学习Python和创建模型,对使用Spacy的NLP非常陌生。我曾经https://spacy.io/usage/training#ner培训Spacy现有的模式——en_core_web_sm。 我用我的领域特定实体训练了这个模型。 现在我假设我会在输出目录中找到一个模型文件。相反,我有4个子文件夹——词汇表、ner、标记器、解析器。还有2个文件meta.json和标记器。ner子文件夹有

  • 在之前的描述中,我们通常把机器学习模型和训练算法当作黑箱子来处理。如果你实践过前几章的一些示例,你惊奇的发现你可以优化回归系统,改进数字图像的分类器,你甚至可以零基础搭建一个垃圾邮件的分类器,但是你却对它们内部的工作流程一无所知。事实上,许多场合你都不需要知道这些黑箱子的内部有什么,干了什么。 然而,如果你对其内部的工作流程有一定了解的话,当面对一个机器学习任务时候,这些理论可以帮助你快速的找到恰