当前位置: 首页 > 知识库问答 >
问题:

理解Dijkstra算法的时间复杂度计算

凤昊东
2023-03-14
  1. 每个顶点可以连接到(V-1)个顶点,因此每个顶点的相邻边数是V-1。假设E代表连接到每个顶点的V-1条边。
  2. 查找和更新最小堆中每个相邻顶点的权重为O(log(V))+O(1)或O(log(V))
  3. 因此,从上面的步骤1和步骤2,更新顶点的所有相邻顶点的时间复杂度是e*(logV)。或e*logv.
  4. 因此所有V顶点的时间复杂度为V*(E*logv),即O(VElogV)

但Dijkstra算法的时间复杂度为O(ElogV)。为什么?

共有1个答案

孙海
2023-03-14

Dijkstra的最短路径算法是O(ElogV),其中:

  • v是顶点数
  • E是边的总数

你的分析是正确的,但是你的符号有不同的含义!您说算法是o(VElogV),其中:

    null
 类似资料:
  • 注:∈/ 意思是不在,我不能在代码中输入。 这个问题可能与一些帖子重复。 理解Dijkstra算法的时间复杂度计算 Dijkstra算法的复杂性 Dijkstras算法的复杂性 我读过它们,甚至读过Quora上的一些帖子,但仍然无法理解。我在伪代码中添加了一些注释,并试图解决它。我真搞不懂为什么它是O(E log V)

  • 我已经通过谷歌和堆栈溢出搜索,但我没有找到一个关于如何计算时间复杂度的清晰而直接的解释。 说代码像下面这样简单: 说一个像下面这样的循环: 这将只执行一次。 时间实际上被计算为而不是声明。

  • Dijkstra算法的这种特殊实现的时间复杂度是多少? 我知道这个问题的几个答案是,当你使用最小堆时,O(E log V),这篇文章和这篇文章也是如此。然而,这里的文章说的是O(V ElogE),它的逻辑与下面的代码类似(但不完全相同)。 算法的不同实现可以改变时间复杂度,我试图分析下面实现的复杂性,但是像检查和忽略中的重复顶点这样的优化让我怀疑自己。 以下是伪代码: 笔记: 从源顶点可到达的每个

  • 我在考虑如何正确计算这个函数的时间复杂度: 我假设它是 O(n),其中 n 是列表的长度。我们的 while 循环是 O(n),for 循环也是 O(n), 这意味着我们得到了 2*O(n),等于 O(n)。 我说的对吗?

  • 如何计算这些回溯算法的时间复杂度,它们是否具有相同的时间复杂度?如果不一样怎么办?请详细解释并感谢您的帮助。 我实际上有点困惑,对于断字(b),复杂度是O(2n),但对于哈密顿循环,复杂度是不同的,对于打印相同字符串的不同排列,以及对于解决n皇后问题,复杂度是不同的。

  • 我正在尝试分析一个算法的时间复杂度。 下面的算法旨在只检查数组的一部分,所以如果它没有多大意义,请不要担心。 我对计算循环周围的时间复杂度很困惑,请看看我的评论。 这是否意味着我们有: T(N) = (C2 C4 C5)N (C1 C3 C6) T(N) = C7*N (C8) T(N)=N?? 循环中的所有内容都是*N? 先谢谢!