我正在尝试连接以下数据帧:
df1
price side timestamp
timestamp
2016-01-04 00:01:15.631331072 0.7286 2 1451865675631331
2016-01-04 00:01:15.631399936 0.7286 2 1451865675631400
2016-01-04 00:01:15.631860992 0.7286 2 1451865675631861
2016-01-04 00:01:15.631866112 0.7286 2 1451865675631866
以及:
df2
bid bid_size offer offer_size
timestamp
2016-01-04 00:00:31.331441920 0.7284 4000000 0.7285 1000000
2016-01-04 00:00:53.631324928 0.7284 4000000 0.7290 4000000
2016-01-04 00:01:03.131234048 0.7284 5000000 0.7286 4000000
2016-01-04 00:01:12.131444992 0.7285 1000000 0.7286 4000000
2016-01-04 00:01:15.631364096 0.7285 4000000 0.7290 4000000
与
data = pd.concat([df1,df2], axis=1)
但是我得到了以下输出:
InvalidIndexError Traceback (most recent call last)
<ipython-input-38-2e88458f01d7> in <module>()
----> 1 data = pd.concat([df1,df2], axis=1)
2 data = data.fillna(method='pad')
3 data = data.fillna(method='bfill')
4 data['timestamp'] = data.index.values#converting to datetime
5 data['timestamp'] = pd.to_datetime(data['timestamp'])#converting to datetime
/usr/local/lib/python2.7/site-packages/pandas/tools/merge.pyc in concat(objs, axis, join, join_axes, ignore_index, keys, levels, names, verify_integrity, copy)
810 keys=keys, levels=levels, names=names,
811 verify_integrity=verify_integrity,
--> 812 copy=copy)
813 return op.get_result()
814
/usr/local/lib/python2.7/site-packages/pandas/tools/merge.pyc in __init__(self, objs, axis, join, join_axes, keys, levels, names, ignore_index, verify_integrity, copy)
947 self.copy = copy
948
--> 949 self.new_axes = self._get_new_axes()
950
951 def get_result(self):
/usr/local/lib/python2.7/site-packages/pandas/tools/merge.pyc in _get_new_axes(self)
1013 if i == self.axis:
1014 continue
-> 1015 new_axes[i] = self._get_comb_axis(i)
1016 else:
1017 if len(self.join_axes) != ndim - 1:
/usr/local/lib/python2.7/site-packages/pandas/tools/merge.pyc in _get_comb_axis(self, i)
1039 raise TypeError("Cannot concatenate list of %s" % types)
1040
-> 1041 return _get_combined_index(all_indexes, intersect=self.intersect)
1042
1043 def _get_concat_axis(self):
/usr/local/lib/python2.7/site-packages/pandas/core/index.pyc in _get_combined_index(indexes, intersect)
6120 index = index.intersection(other)
6121 return index
-> 6122 union = _union_indexes(indexes)
6123 return _ensure_index(union)
6124
/usr/local/lib/python2.7/site-packages/pandas/core/index.pyc in _union_indexes(indexes)
6149
6150 if hasattr(result, 'union_many'):
-> 6151 return result.union_many(indexes[1:])
6152 else:
6153 for other in indexes[1:]:
/usr/local/lib/python2.7/site-packages/pandas/tseries/index.pyc in union_many(self, others)
959 else:
960 tz = this.tz
--> 961 this = Index.union(this, other)
962 if isinstance(this, DatetimeIndex):
963 this.tz = tz
/usr/local/lib/python2.7/site-packages/pandas/core/index.pyc in union(self, other)
1553 result.extend([x for x in other._values if x not in value_set])
1554 else:
-> 1555 indexer = self.get_indexer(other)
1556 indexer, = (indexer == -1).nonzero()
1557
/usr/local/lib/python2.7/site-packages/pandas/core/index.pyc in get_indexer(self, target, method, limit, tolerance)
1890
1891 if not self.is_unique:
-> 1892 raise InvalidIndexError('Reindexing only valid with uniquely'
1893 ' valued Index objects')
1894
InvalidIndexError: Reindexing only valid with uniquely valued Index objects
我已经删除了额外的列,删除了可能存在冲突的重复项和NA,但我只是不知道出了什么问题。
在我的例子中,问题是因为我有重复的列名。
pd.concat
要求索引是唯一的。要删除具有重复索引的行,请使用
df = df.loc[~df.index.duplicated(keep='first')]
import pandas as pd
from pandas import Timestamp
df1 = pd.DataFrame(
{'price': [0.7286, 0.7286, 0.7286, 0.7286],
'side': [2, 2, 2, 2],
'timestamp': [1451865675631331, 1451865675631400,
1451865675631861, 1451865675631866]},
index=pd.DatetimeIndex(['2000-1-1', '2000-1-1', '2001-1-1', '2002-1-1']))
df2 = pd.DataFrame(
{'bid': [0.7284, 0.7284, 0.7284, 0.7285, 0.7285],
'bid_size': [4000000, 4000000, 5000000, 1000000, 4000000],
'offer': [0.7285, 0.729, 0.7286, 0.7286, 0.729],
'offer_size': [1000000, 4000000, 4000000, 4000000, 4000000]},
index=pd.DatetimeIndex(['2000-1-1', '2001-1-1', '2002-1-1', '2003-1-1', '2004-1-1']))
df1 = df1.loc[~df1.index.duplicated(keep='first')]
# price side timestamp
# 2000-01-01 0.7286 2 1451865675631331
# 2001-01-01 0.7286 2 1451865675631861
# 2002-01-01 0.7286 2 1451865675631866
df2 = df2.loc[~df2.index.duplicated(keep='first')]
# bid bid_size offer offer_size
# 2000-01-01 0.7284 4000000 0.7285 1000000
# 2001-01-01 0.7284 4000000 0.7290 4000000
# 2002-01-01 0.7284 5000000 0.7286 4000000
# 2003-01-01 0.7285 1000000 0.7286 4000000
# 2004-01-01 0.7285 4000000 0.7290 4000000
result = pd.concat([df1, df2], axis=0)
print(result)
bid bid_size offer offer_size price side timestamp
2000-01-01 NaN NaN NaN NaN 0.7286 2 1.451866e+15
2001-01-01 NaN NaN NaN NaN 0.7286 2 1.451866e+15
2002-01-01 NaN NaN NaN NaN 0.7286 2 1.451866e+15
2000-01-01 0.7284 4000000 0.7285 1000000 NaN NaN NaN
2001-01-01 0.7284 4000000 0.7290 4000000 NaN NaN NaN
2002-01-01 0.7284 5000000 0.7286 4000000 NaN NaN NaN
2003-01-01 0.7285 1000000 0.7286 4000000 NaN NaN NaN
2004-01-01 0.7285 4000000 0.7290 4000000 NaN NaN NaN
请注意还有pd.join
,它可以根据DataFrames的索引加入它们,并根据how
参数处理非唯一索引。不删除索引重复的行。
In [94]: df1.join(df2)
Out[94]:
price side timestamp bid bid_size offer \
2000-01-01 0.7286 2 1451865675631331 0.7284 4000000 0.7285
2000-01-01 0.7286 2 1451865675631400 0.7284 4000000 0.7285
2001-01-01 0.7286 2 1451865675631861 0.7284 4000000 0.7290
2002-01-01 0.7286 2 1451865675631866 0.7284 5000000 0.7286
offer_size
2000-01-01 1000000
2000-01-01 1000000
2001-01-01 4000000
2002-01-01 4000000
In [95]: df1.join(df2, how='outer')
Out[95]:
price side timestamp bid bid_size offer offer_size
2000-01-01 0.7286 2 1.451866e+15 0.7284 4000000 0.7285 1000000
2000-01-01 0.7286 2 1.451866e+15 0.7284 4000000 0.7285 1000000
2001-01-01 0.7286 2 1.451866e+15 0.7284 4000000 0.7290 4000000
2002-01-01 0.7286 2 1.451866e+15 0.7284 5000000 0.7286 4000000
2003-01-01 NaN NaN NaN 0.7285 1000000 0.7286 4000000
2004-01-01 NaN NaN NaN 0.7285 4000000 0.7290 4000000
您可以减轻此错误,而无需更改数据或删除重复数据。只需使用DataFrame.reset_index创建一个新索引:
df = df.reset_index()
旧索引在数据框中保留为一列,但如果不需要,可以执行以下操作:
df = df.reset_index(drop=True)
有些人更喜欢:
df.reset_index(inplace=True, drop=True)
问题内容: 我正在尝试合并以下内容: df1 和 df2 用 但是我得到以下输出: 我删除了其他列,删除了重复项和NA,否则可能会发生冲突-但我根本不知道出什么问题了。 请帮忙谢谢 问题答案: 要求 索引 是唯一的。要删除索引重复的行,请使用 请注意,还有,可以根据数据帧的索引加入DataFrame,并根据参数处理非唯一索引。具有重复索引的行不会被删除。
我正在尝试从多索引数据帧中仅使用一个索引来创建新的数据帧。 理想情况下,我想要这样的东西: 和: 基本上,我想删除除level之外的多索引的所有其他索引。有没有一个简单的方法可以做到这一点?
我有两个形状相同的python数据帧,例如: 我想使用df2中的值作为行索引来选择df1中的值,并创建一个形状相等的新数据帧。预期结果: 我已尝试使用.loc,它在单个列中运行良好: 但是我不能同时在所有列上使用. loc或. iloc。我想避免循环来优化性能,因为我正在处理一个大数据帧。有什么想法吗?
CreateIndexes 根据struct中的tag来创建索引 CreateUniques 根据struct中的tag来创建唯一索引
我有一个多索引数据框,看起来像 uid tid文本 abc x t1 bcd y t2 uid 和 tid 是索引。我有一个 uid 列表,并希望获取与该列表中的 uid 相对应的行,但保留第 2 级索引值 (tid)。我想在不运行任何显式循环的情况下执行此操作。这可能吗?
我有一个ArrayList,里面有一堆MyObject对象。我想在我的对象中保留一个整数字段,它是ArrayList中这个对象的键,这样我就可以很容易地得到这个元素在ArrayList中的位置。 当我从这个ArrayList中删除一个对象时,会出现问题,因为索引会向左移动。避免这个问题的最佳方法是什么? 我应该不删除元素,而是用null覆盖它们(这样索引就不会移位),还是应该在删除一次之后遍历Ar