mean <- 100
sd <- 5
lower <- 40
upper <- 120
n <- 100
library(msm)
data <- as.numeric(mean+sd*scale(rtnorm(n, lower=40, upper=120)))
您可以使用迭代的答案。这里,我一个接一个地将样本添加到向量中,但前提是得到的缩放数据集保持在您设置的边界内。它需要更长的时间,但它有效:
n <- 10000
mean <- 100
sd <- 15
lower <- 40
upper <- 120
data <- rtnorm(1, lower=((lower - mean)/sd), upper=((upper - mean)/sd))
while (length(data) < n) {
sample <- rtnorm(1, lower=((lower - mean)/sd), upper=((upper - mean)/sd))
data_copy = c(data, sample)
data_copy_scaled = mean + sd * scale(data_copy)
if (min(data_copy_scaled) >= lower & max(data_copy_scaled) <= upper) {
data = c(data, sample)
}
}
scaled_data = as.numeric(mean + sd * scale(data))
summary(scaled_data)
Min. 1st Qu. Median Mean 3rd Qu. Max.
40.38 91.61 104.35 100.00 111.28 120.00
sd(scaled_data)
15
在我以前的答案下面,这不太奏效
用您想要的平均值和sd来缩放RTNorm
的下限和上限怎么样?
n <- 1000000
mean <- 100
sd <- 5
library(msm)
data <- as.numeric(mean+sd*scale(rtnorm(n, lower=((40 - mean)/sd), upper=((120 - mean)/sd))))
summary(data)
Min. 1st Qu. Median Mean 3rd Qu. Max.
76.91 96.63 100.00 100.00 103.37 120.00
sd(data)
5
如果正确,则当 Z来自mu'=0,sigma'=1的标准正态分布Z时,我的y将从对数正态分布中提取。 最后,如果 y=exp^(ln((mean^2)/(sqrt(variance+mean^2))+sqrt(ln(1+(variance)/(mean^2)))*Z),y来自具有均值和方差的对数正态分布是否正确? 我的SAS代码是: 参考资料: Rick Wicklin的函数:http://blo
我试着增加平局的数量--仍然导致sd在96左右。
我想生成一个均值为120,标准差为20的正态分布。但是我需要将这些值限制在[0,150]。我该怎么办?
从平均值0.5和标准差0.1的正态分布中得出伪随机数。 既然如此,下面的Matlab代码是否等价于从一个在0处截断的正态分布在1处进行采样?
在随机收集来自独立来源的数据中,通常观察到数据的分布是正常的。 这意味着,在绘制水平轴上的变量的值和垂直轴中的值的计数时,我们得到一个钟形曲线。 曲线的中心代表数据集的平均值。 在图中,百分之五十的值位于平均值的左侧,另外五十分之一位于图的右侧。 统称为正态分布。 R有四个内置函数来生成正态分布。它们在下面描述 - 以下是上述函数中使用的参数的描述 - x - 是数字的向量。 p - 是概率向量。
我想生成一个截断的正态分布,其中任何一个R中都有已知的参数。注意,我不是在寻找伪随机数生成器。 假设I有一个均值为5,标准差为1的正态分布。我能画出一个截断正态分布的值吗,在点1和点10截断?