当前位置: 首页 > 知识库问答 >
问题:

神经网络与图像分类

詹夕
2023-03-14

我用两个输出神经元会得到更好的结果吗?(一个激活为“是音乐”,另一个激活为“不是音乐”)。

(您可以在这里看到这方面的C++源代码:https://github.com/mcmenaminadrian/musonet--尽管在任何给定的时间,公开回购中的内容可能并不完全是我在机器上使用的内容。)

暂时还没有答案

 类似资料:
  • 我正在尝试运行一个CNN(卷积神经网络),具有1通道/灰度图像,大小为28x28像素。当我尝试训练模型时,它说: ValueError:图层sequential_5输入0与图层不兼容:: 预期min_ndim=4,发现ndim=3。完整形状收到:[无,28,28]

  • 神经网络 (Neural Network) 是机器学习的一个分支,全称人工神经网络(Artificial Neural Network,缩写 ANN),是一种模仿生物神经网络的结构和功能的数学模型或计算模型,用于对函数进行估计或近似。 Perceptron (感知器) 一个典型的神经网络由输入层、一个或多个隐藏层以及输出层组成,其中箭头代表着数据流动的方向,而圆圈代表激活函数(最常用的激活函数为

  • 译者:bat67 最新版会在译者仓库首先同步。 可以使用torch.nn包来构建神经网络. 我们以及介绍了autograd,nn包依赖于autograd包来定义模型并对它们求导。一个nn.Module包含各个层和一个forward(input)方法,该方法返回output。 例如,下面这个神经网络可以对数字进行分类: 这是一个简单的前馈神经网络(feed-forward network)。它接受一

  • 我正在研究一个深度学习问题,它需要我有一个深度学习模型,该模型具有输入图像和输出另一张图像。现在,输入和输出图像具有不同的维度,因此我不能使用自动编码器。我已经尝试构建一个非常简单的卷积神经网络,它有一个最终的输出密集层,该层以输出图像的宽度和高度相乘为“单位”参数。然而,我下面附加的这个网络没有成功。我的问题是: CNN是不是像我这样处理这个问题的合适的深度学习网络 如果没有,我还可以尝试其他什

  • 我正在建立一个分类神经网络,以便对两个不同的类进行分类。 所以这是一个二元分类问题,我正尝试用一个前馈神经网络来解决这个任务。 但是网络是不能学习的,事实上,在训练过程中,网络的精度是不变的。 具体而言,数据集由以下人员组成: 65673行22列。 其中一列是具有值(0,1)的目标类,而其他21列是预测器。数据集是这样平衡的: null 可以看到也有NaN值,但我不能删除它,因为在其他列中有值0是

  • 在基于深度信念网络的改进分类中,作者指出,为了更好地分类,在训练分类器之前,使用生成模型初始化模型和模型特征。通常需要它们来解决单独的无监督和有监督学习问题。生成受限Boltzmann机器和深层信念网络被广泛用于无监督学习目的。 我的问题是,如果我要通过无监督学习执行非图像多类分类任务,使用深层信念网络或卷积神经网络是否更好,而不考虑数据集也很重要? 这里提出了一个与图像分类任务相关的类似问题:深