我们有一个100个顶点的有向图
解:2和100。
我想:
如果我们有这个图:v1-
有人能帮我或验证我吗?
v1-
如果按该顺序获得边(v1-
V1-
False,因为所有距离都是1(从开始节点到所有其他节点都有一条直接边),所以在对边的一次传递中,您将获得正确的结果(无论边的顺序如何),第二次传递将停止。
v99v100, v98v99,..., v3v2, v2v1我们需要100
如果与第一个示例中的图形相同,但边的顺序相反,则为True。
我知道Bellman-Ford算法最多需要| V |-1次迭代才能找到最短路径,如果图不包含负权重循环。有没有办法修改Bellman-Ford算法,使其在1次迭代中找到最短路径?
我有一个家庭作业来实现贝尔曼·福特的算法,并在一些图形上测试它。我实现了这个算法,在3张图中的2张上测试了它,它是有效的。但是在第三个图中,我在调用函数时没有输出。 此部分创建图形及其边。函数将顶点数和边数作为参数。 这是添加新边的函数。 下面是我对Bellman Ford算法的实现。
我一直试图通过以下资源来理解贝尔曼福特的正确实现:1 如果我们已经知道给定的加权有向图不包含一个圈(因此也没有负圈),是否遵循Bellman-Ford算法的正确实现? 我在上述实现中遇到的第一个问题是,如果图中只有两个节点具有从源节点到目标节点的定向边,那么需要修改for的第一个
我这里有一个更聪明的贝尔曼福特版本: 有人能想到一种图,对于这种图,该算法的时间复杂度下限为(V*E),其中V=#顶点,E=#边 我想看看这个陷阱在哪里。
在具有V节点和E边的有向图中,Bellman-Ford算法将每个顶点(或者更确切地说,每个顶点的边)松弛(V-1)次。这是因为从源到任何其他节点的最短路径最多包含(V-1)条边。在第V次迭代中,如果边可以松弛,则表示存在负循环。 现在,我需要找到被这个负循环“摧毁”的其他节点。也就是说,由于从源到位于负循环中的节点的路径上有一个或多个节点,因此一些不在负循环中的节点现在与源的距离为负无穷远。 实现
我正在努力改进Bellman-Ford算法的性能,我想知道改进是否正确。 我运行松弛部分不是V-1而是V次,并且我得到了一个涉及的布尔变量,如果在外循环的迭代过程中发生任何松弛,则将其设置为。如果在n.迭代中没有发生松弛,其中n 我认为这可能会改善运行时,因为有时我们不必迭代V-1次来找到最短路径,而且我们可以更早地返回,而且它也比用另一块代码检查循环更优雅。