我相信你的逻辑是正确的,正确答案是1、2、4、5、3。作业一定有错误。
请记住,如果节点3在节点2之前被访问,那么{1,3,5,2,4}也是一个可接受的答案。
深度优先搜索(DFS)算法以向深运动的方式遍历图形,并使用堆栈记住在任何迭代中发生死角时获取下一个顶点以开始搜索。 如在上面给出的示例中,DFS算法首先从S到A到D到G到E到B,然后到F,最后到C.它使用以下规则。 Rule 1 - 访问相邻的未访问顶点。 将其标记为已访问。 显示它。 将其推入堆栈。 Rule 2 - 如果未找到相邻顶点,则从堆栈中弹出一个顶点。 (它将弹出堆栈中的所有顶点,这些
图 图是一种数据结构,其中节点可以具有零个或者多个相邻的元素,两个节点之间的连接成为边。节点也可以成为顶点。 邻接表: 邻接表一般采用数组+链表的形式,数组表示各个顶点,链表中的元素表示该顶点与链表中的元素相连,与链表本身的指针没有关系。如上图 数组0 对应的链表1->3->4 表示0这个顶点与1 3 4这个顶点连接 数组1 表示1这个顶点与 0 2 4顶点相连以此类推 邻接矩阵和邻接表的区别 邻
我们不会在C编程语言中看到Depth First Traversal(或Depth First Search)的实现。 出于参考目的,我们将遵循我们的示例并将其作为我们的图形模型 - 用C实现 (Implementation in C) #include <stdio.h> #include <stdlib.h> #include <stdbool.h> #define MAX 5 struct
主要内容:src/runoob/graph/Components.java 文件代码:深度优先遍历(Depth First Search)的主要思想是首先以一个未被访问过的顶点作为起始顶点,沿当前顶点的边走到未访问过的顶点。当没有未访问过的顶点时,则回到上一个顶点,继续试探别的顶点,直至所有的顶点都被访问过。 下图示例的图从 0 开始遍历顺序如右图所示: 无向图 G 的一个极大连通子图称为 G 的一个连通分量(或连通分支)。连通图只有一个连通分量,即其自身;非连通的无向图有多个连通
主要内容:src/runoob/binary/Traverse.java 文件代码:二分搜索树遍历分为两大类,深度优先遍历和层序遍历。 深度优先遍历分为三种:先序遍历(preorder tree walk)、中序遍历(inorder tree walk)、后序遍历(postorder tree walk),分别为: 1、前序遍历:先访问当前节点,再依次递归访问左右子树。 2、中序遍历:先递归访问左子树,再访问自身,再递归访问右子树。 3、后序遍历:先递归访问左右子树,再访问自身节
我正在尝试在有向图上实现BFS。我完全确定我的算法是正确的,但是,下面的代码段返回错误: 图表。CPP文件: 以及在以下方面的实际BFS实施: 因此,除了源节点之外,队列中的其他节点都给出了错误的邻接列表。虽然队列顺序运行良好,但队列中的节点给出了错误的邻接。 我不确定为什么会发生这种情况,虽然我怀疑这是由于按值复制节点而不是引用。 这是我在很长一段时间后的CPP计划,所以如果我错过了什么,请启发