当前位置: 首页 > 知识库问答 >
问题:

平衡二叉搜索树的定义

云胤
2023-03-14

所以,我一直在研究平衡的二叉查找树。

我谷歌了一下,这是我的发现:

二叉树,其中每个节点的两个子树的深度相差 1 或更小(来自维基百科)

难道就不能把平衡二叉树定义为高度不超过ceil(log(n ^ 1)/log ^ 2)的树吗?

从这个答案来看,提问者似乎已经问了同样的事情,但是公认的答案通过举斐波纳契树的例子拒绝了这个想法。斐波纳契树不是平衡树,对吗?我认为回答者可能会与AVL树中平衡树的定义混淆,根据我的理解,在AVL树中,允许某些不平衡的树

共有1个答案

夏令秋
2023-03-14

除非我的计算错了,否则这个定义是行不通的。例如,如果你取一个高度为6的完整二叉树,它有63个节点。如果删除底部的两个兄弟姐妹及其父节点,则有60个节点。这棵树不平衡,但它的高度仍然等于ceil(log(n 1)/log 2)。

 类似资料:
  • 在上一节中,我们考虑构建一个二叉搜索树。正如我们所学到的,二叉搜索树的性能可以降级到 $$O(n)$$ 的操作,如 get 和 put ,如果树变得不平衡。在本节中,我们将讨论一种特殊类型的二叉搜索树,它自动确保树始终保持平衡。这棵树被称为 AVL树,以其发明人命名:G.M. Adelson-Velskii 和E.M.Landis。 AVL树实现 Map 抽象数据类型就像一个常规的二叉搜索树,唯一

  • 在我们继续之前,我们来看看执行这个新的平衡因子要求的结果。我们的主张是,通过确保树总是具有 -1,0或1 的平衡因子,我们可以获得更好的操作性能的关键操作。 让我们开始思考这种平衡条件如何改变最坏情况的树。有两种可能性,一个左重树和一个右重树。 如果我们考虑高度0,1,2和3的树,Figure 2 展示了在新规则下可能的最不平衡的左重树。 Figure 2 看树中节点的总数,我们看到对于高度为0的

  • 现在我们已经证明保持 AVL树的平衡将是一个很大的性能改进,让我们看看如何增加过程来插入一个新的键到树。由于所有新的键作为叶节点插入到树中,并且我们知道新叶的平衡因子为零,所以刚刚插入的节点没有新的要求。但一旦添加新叶,我们必须更新其父的平衡因子。这个新叶如何影响父的平衡因子取决于叶节点是左孩子还是右孩子。如果新节点是右子节点,则父节点的平衡因子将减少1。如果新节点是左子节点,则父节点的平衡因子将

  • 如果我有一个平衡的二叉树,并且我想在其中搜索一个项目,那么大的oh时间复杂度会是O(n)吗?在二叉树中搜索一个项目,不管它是否平衡,会改变O(n)的大时间复杂性吗?我知道如果我们有一个平衡的BST,那么搜索一个项目就等于BST的高度so O(log n),但是普通的二叉树呢?

  • 我刚刚学习了如何创建二进制搜索数据结构,它将用于存储字典中的数千个单词。我遇到的问题是,统计添加和删除数据需要很长时间。通常为199263毫秒或200秒,计算100000个单词。有人告诉我,拥有一棵能够自我平衡的树将提高效率,使操作更快。 我的问题是如何使我的树自动平衡以使其高效。我通过消除重复的单词来使树的高度变短,从而做了一些小小的改进。 如果有人能给我一些建议,告诉我如何使树高效,以及如何在

  • 我目前正在编写一个递归方法,以返回整个二元搜索树上的最大不平衡。我对递归编程非常陌生,所以很难理解。我构建的树的不平衡度为1,但我的方法只返回0。我相信我的逻辑是有缺陷的。 我百分之百确定它正在运行“(root==null){返回0;}”在方法的每个步骤中。我尝试删除它并进一步定义它,它仍在继续这样做。 这是我当前的方法: