当前位置: 首页 > 面试题库 >

如何在广度优先搜索中跟踪路径?

充高扬
2023-03-14
问题内容

如何跟踪广度优先搜索的路径,如以下示例所示:

如果搜索key 11,则返回连接1到11 的 最短 列表。

[1, 4, 7, 11]

问题答案:

您应该先查看http://en.wikipedia.org/wiki/Breadth-
first_search

下面是一个快速实现,其中我使用了一个列表列表来表示路径队列。

# graph is in adjacent list representation
graph = {
        '1': ['2', '3', '4'],
        '2': ['5', '6'],
        '5': ['9', '10'],
        '4': ['7', '8'],
        '7': ['11', '12']
        }

def bfs(graph, start, end):
    # maintain a queue of paths
    queue = []
    # push the first path into the queue
    queue.append([start])
    while queue:
        # get the first path from the queue
        path = queue.pop(0)
        # get the last node from the path
        node = path[-1]
        # path found
        if node == end:
            return path
        # enumerate all adjacent nodes, construct a new path and push it into the queue
        for adjacent in graph.get(node, []):
            new_path = list(path)
            new_path.append(adjacent)
            queue.append(new_path)

print bfs(graph, '1', '11')

另一种方法是维护从每个节点到其父节点的映射,并在检查相邻节点时记录其父节点。搜索完成后,只需根据父映射进行回溯即可。

graph = {
        '1': ['2', '3', '4'],
        '2': ['5', '6'],
        '5': ['9', '10'],
        '4': ['7', '8'],
        '7': ['11', '12']
        }

def backtrace(parent, start, end):
    path = [end]
    while path[-1] != start:
        path.append(parent[path[-1]])
    path.reverse()
    return path


def bfs(graph, start, end):
    parent = {}
    queue = []
    queue.append(start)
    while queue:
        node = queue.pop(0)
        if node == end:
            return backtrace(parent, start, end)
        for adjacent in graph.get(node, []):
            if node not in queue :
                parent[adjacent] = node # <<<<< record its parent 
                queue.append(adjacent)

print bfs(graph, '1', '11')

上面的代码基于没有循环的假设。



 类似资料:
  • 主要内容:深度优先搜索(简称“深搜”或DFS),广度优先搜索,总结前边介绍了有关图的 4 种存储方式,本节介绍如何对存储的图中的顶点进行遍历。常用的遍历方式有两种: 深度优先搜索和 广度优先搜索。 深度优先搜索(简称“深搜”或DFS) 图 1 无向图 深度优先搜索的过程类似于树的先序遍历,首先从例子中体会深度优先搜索。例如图 1 是一个无向图,采用深度优先算法遍历这个图的过程为: 首先任意找一个未被遍历过的顶点,例如从 V1 开始,由于 V1 率先访问过了,所以

  • 首先感谢大家看这个问题。 对于学校作业,我们应该创建一个BFS算法,并用它来做各种事情。其中一件事是,我们应该找到图的根节点和目标节点之间的所有路径。我不知道如何做到这一点,因为我找不到一种方法来跟踪所有备用路线,同时不包括副本/周期。 这是我的BFS代码: 如果能在概念上朝着正确的方向推进,将会受到极大的赞赏。 tl;dr 如何使用 BFS 查找两个节点之间的所有路径? 这是图表,因为我不知道如

  • 我正在研究BFS算法,我有一个关于如何将相邻节点插入队列的问题。 例如,假设我们正在处理一个无向图,我们希望执行BFS来输出图的内容,那么我们如何知道在从队列中取出一个初始节点后,相邻节点以什么顺序插入到队列中呢?还有,有没有办法修改邻居节点插入队列的方式? 任何帮助都将不胜感激,谢谢。

  • 问题内容: 给定一棵存储为关系的树: 如何获得给定节点的所有后代?例如,对于1,我要(1、2、3、4、5、6),对于3我要(3、4、5),对于7我要(7、8、9)。 我正在通过脚本(Python,但这没关系)执行此操作,因此我可以执行以下操作: 但是,如果有一些时髦的SQL可以让我在一个查询中执行此操作,那将是非常棒的。 问题答案: 如果您有能力更改表定义,则使用嵌套集而不是直接父链接会使此问题更

  • 本文向大家介绍什么是广度优先搜索?相关面试题,主要包含被问及什么是广度优先搜索?时的应答技巧和注意事项,需要的朋友参考一下 类似树的按层遍历,其过程为:首先访问初始点Vi,并将其标记为已访问过,接着访问Vi的所有未被访问过可到达的邻接点Vi1、Vi2……Vit,并均标记为已访问过,然后再按照Vi1、Vi2……Vit的次序,访问每一个顶点的所有未被访问过的邻接点,并均标记为已访问过,依此类推,直到图

  • 在继续使用其他图算法之前,让我们分析广度优先搜索算法的运行时性能。首先要观察的是,对于图中的每个顶点 $$|V|$$ 最多执行一次 while 循环。因为一个顶点必须是白色,才能被检查和添加到队列。这给出了用于 while 循环的 $$O(V)$$。嵌套在 while 内部的 for 循环对于图中的每个边执行最多一次,$$|E|$$。原因是每个顶点最多被出列一次,并且仅当节点 u 出队时,我们才检

  • 通过构建图,我们现在可以将注意力转向我们将使用的算法来找到字梯问题的最短解。我们将使用的图算法称为“宽度优先搜索”算法。宽度优先搜索(BFS)是用于搜索图的最简单的算法之一。它也作为几个其他重要的图算法的原型,我们将在以后研究。 给定图 G 和起始顶点 s,广度优先搜索通过探索图中的边以找到 G 中的所有顶点,其中存在从 s 开始的路径。通过广度优先搜索,它找到和 s 相距 k 的所有顶点,然后找

  • 我正在尝试在有向图上实现BFS。我完全确定我的算法是正确的,但是,下面的代码段返回错误: 图表。CPP文件: 以及在以下方面的实际BFS实施: 因此,除了源节点之外,队列中的其他节点都给出了错误的邻接列表。虽然队列顺序运行良好,但队列中的节点给出了错误的邻接。 我不确定为什么会发生这种情况,虽然我怀疑这是由于按值复制节点而不是引用。 这是我在很长一段时间后的CPP计划,所以如果我错过了什么,请启发