调优可以通过系统配置、程序编写和作业调度算法来进行。 hdfs的block.size可以调到128/256(网络很好的情况下,默认为64) 调优的大头:mapred.map.tasks、mapred.reduce.tasks设置mr任务数(默认都是1) mapred.tasktracker.map.tasks.maximum每台机器上的最大map任务数 mapred.tasktracker.reduce.tasks.maximum每台机器上的最大reduce任务数 mapred.reduce.slowstart.completed.maps配置reduce任务在map任务完成到百分之几的时候开始进入 这个几个参数要看实际节点的情况进行配置,reduce任务是在33%的时候完成copy,要在这之前完成map任务,(map可以提前完成) mapred.compress.map.output,mapred.output.compress配置压缩项,消耗cpu提升网络和磁盘io 合理利用combiner 注意重用writable对象
我在我的Ubuntu VM上有hadoop 2.5.2单模式安装,它是:4核,每个核3GHz;4G内存。这个VM不是用于生产的,只用于演示和学习。 然后,我使用python编写了一个vey简单的map-reduce应用程序,并使用该应用程序处理49个XML。所有这些xml文件都很小,每个文件都有数百行。所以,我期待一个快速的过程。但是,big22令我惊讶的是,它花了20多分钟才完成这项工作(该工作
对于某些工作负载,可以在通过在内存中缓存数据或者打开一些实验选项来提高性能。 在内存中缓存数据 Spark SQL可以通过调用sqlContext.cacheTable("tableName")方法来缓存使用柱状格式的表。然后,Spark将会仅仅浏览需要的列并且自动地压缩数据以减少内存的使用以及垃圾回收的 压力。你可以通过调用sqlContext.uncacheTable("tableName")
集群中的Spark Streaming应用程序获得最好的性能需要一些调整。这章将介绍几个参数和配置,提高Spark Streaming应用程序的性能。你需要考虑两件事情: 高效地利用集群资源减少批数据的处理时间 设置正确的批容量(size),使数据的处理速度能够赶上数据的接收速度 减少批数据的执行时间 设置正确的批容量 内存调优
常用命令 1. 查看系统 CPU 总数 $ grep -c ^processor /proc/cpuinfo $ lscpu 2. 查看网卡信息,主机名 $ hostname $ ip addr show eth0 3. 查看系统上运行的服务 # systemctl list-units -t service | awk '$3=="active"' ** ** ** **
硬件因素 内存(RAM)的读写速度时普通 SSD 的 25 倍。MongoDB 中依赖 RAM 最多的操作包括:聚合、索引遍历、写操作、查询引擎、连接 Table 1. 常见存储的IOPS 类型 IOPS 7200 rpm SATA 75 - 100 15000 rpm SAS 175 - 210 SSD Intel X25-E(SLC) 5000 SSD Intel X25-M G2(MLC)
主要内容:硬件和操作系统问题,运行时配置问题,编译时配置问题,原子操作,附录:跟踪的详细分析Apache 2.x是一个通用的Web服务器,旨在提供灵活性,可移植性和性能之间的平衡。虽然它没有专门设计用于设置基准记录,但Apache 2.x在许多实际情况下都具有高性能。 与Apache 1.3相比,版本2.x包含许多额外的优化,以提高吞吐量和可伸缩性。默认情况下,大多数这些改进都已启用。但是,存在可能显着影响性能的编译时和运行时配置选择。本文档介绍了服务器管理员可以配置的选项,以调整Apa