当前位置: 首页 > 面试题库 >

Python-在numpy数组上映射函数的最有效方法

唐阳飙
2023-03-14
问题内容

在numpy数组上映射函数的最有效方法是什么?我在当前项目中所做的工作如下:

import numpy as np 

x = np.array([1, 2, 3, 4, 5])

# Obtain array of square of each element in x
squarer = lambda t: t ** 2
squares = np.array([squarer(xi) for xi in x])

但是,这似乎效率很低,因为我正在使用列表推导将新数组构造为Python列表,然后再将其转换回numpy数组。


问题答案:

我测试过的所有建议的方法,加上np.array(map(f, x))perfplot(我的一个小项目)。

消息1:如果可以使用numpy的本机函数,请执行此操作。

如果你想已经矢量化功能的矢量(如x**2在原岗位的例子),使用的是多比什么都更快(注意对数标度):

如果你确实需要向量化,那么使用哪种变体并不重要。

复制剧情的代码:

import numpy as np
import perfplot
import math


def f(x):
    # return math.sqrt(x)
    return np.sqrt(x)


vf = np.vectorize(f)


def array_for(x):
    return np.array([f(xi) for xi in x])


def array_map(x):
    return np.array(list(map(f, x)))


def fromiter(x):
    return np.fromiter((f(xi) for xi in x), x.dtype)


def vectorize(x):
    return np.vectorize(f)(x)


def vectorize_without_init(x):
    return vf(x)


perfplot.show(
    setup=lambda n: np.random.rand(n),
    n_range=[2**k for k in range(20)],
    kernels=[
        f,
        array_for, array_map, fromiter, vectorize, vectorize_without_init
        ],
    xlabel='len(x)',
    )


 类似资料:
  • 在numpy数组上映射函数最有效的方法是什么?我在当前项目中的做法如下: 然而,这看起来可能是非常低效的,因为我使用列表理解来构造新的数组作为Python列表,然后再将其转换回Numpy数组。 我们能做得更好吗?

  • 问题内容: 信不信由你,在分析当前代码后,numpy数组还原的重复操作将占用大量的运行时间。我现在拥有的是基于视图的常见方法: 还有其他方法可以更有效地执行此操作,还是我对不切实际的numpy性能的痴迷所致的幻觉? 问题答案: 创建时,您正在创建原始数组的视图。然后,您可以更改原始数组,并且视图将更新以反映所做的更改。 您是否经常需要重新创建视图?您应该能够执行以下操作: 我不是numpy专家,但

  • 问题内容: 是否可以将NumPy数组映射到位? 如果是,怎么办? 给定-2D数组-这是目前为我完成窍门的一些代码: 但是它是如此丑陋,以至于我怀疑在NumPy内的某个地方一定有一个函数可以对以下内容执行相同的操作: 但是如果存在上述类似内容,我将无法找到它。 问题答案: 只有在空间有限的情况下,才值得尝试就地执行此操作。如果是这样,可以通过遍历数组的展平视图来稍微加快代码的速度。由于在可能的情况下

  • 问题内容: 在数组中对对象进行分组的最有效方法是什么? 例如,给定此对象数组: 我正在表格中显示此信息。我想对不同的方法进行分组,但是我想对这些值求和。 我将Underscore.js用于其groupby函数,这很有用,但并不能解决所有问题,因为我不希望它们“分裂”而是“合并”,更像SQL 方法。 我正在寻找的是能够总计特定值(如果要求)。 因此,如果我进行了groupby ,我希望收到: 如果我

  • 问题内容: 示例问题 作为一个简单的示例,请考虑以下定义的numpy数组: 其中,像这样在控制台输出: 我现在想按行“向前填充” array中的值。我的意思是用左侧最接近的有效值替换每个值。所需的结果如下所示: 到目前为止尝试过 我试过使用for循环: 我还尝试过使用熊猫数据框作为中间步骤(因为熊猫数据框具有非常整洁的内置方法用于正向填充): 以上两种策略都能产生预期的结果,但是我一直在想:仅使用

  • 问题内容: 我在创建numpy数组的numpy数组时遇到问题。我将在一个循环中创建它: 所需结果: 实际结果: 可能吗?我不知道数组的最终尺寸,因此无法使用固定尺寸对其进行初始化。 问题答案: 永远不要在循环中追加数组:与基本的Python相比,这是NumPy非常不擅长的一项操作。这是因为您要对每个数据进行完整复制,这将花费您二次时间。 相反,只需将您的数组附加到Python列表中,并在最后进行转