我有一个熊猫数据框。我想“落后”我的专栏之一。例如,这意味着将整个列“ gdp”上移一位,然后删除其余行底部的所有多余数据,以使所有列的长度再次相等。
df =
y gdp cap
0 1 2 5
1 2 3 9
2 8 7 2
3 3 4 7
4 6 7 7
df_lag =
y gdp cap
0 1 3 5
1 2 7 9
2 8 4 2
3 3 7 7
无论如何要这样做?
In [44]: df['gdp'] = df['gdp'].shift(-1)
In [45]: df
Out[45]:
y gdp cap
0 1 3 5
1 2 7 9
2 8 4 2
3 3 7 7
4 6 NaN 7
In [46]: df[:-1]
Out[46]:
y gdp cap
0 1 3 5
1 2 7 9
2 8 4 2
3 3 7 7
问题内容: 这可能很容易,但是我有以下数据: 在数据框1中: 在数据框2中: 我想要一个具有以下形式的数据框: 我尝试使用该方法,但是得到了交叉连接(即笛卡尔积)。 什么是正确的方法? 问题答案: 通常看来,您只是在寻找联接:
问题内容: 我正在编写一个脚本,以将带有标头的大.xlsx文件减少到一个csv中,然后根据标头名称仅写有所需列的新csv文件。 我得到的错误是最后一部分代码,它说 我确定我忽略了一些愚蠢的事情,但是我已经阅读了熊猫网站上的to_csv文档,但我仍然感到茫然。我知道我使用了不正确的to_csv参数,但我似乎无法理解我猜的文档。 任何帮助表示赞赏,谢谢! 问题答案: 选择特定列的方法是这样的-
我想使用两列作为行ID,同时计算基于时间的分组。请看下图: 转化成这样: 正在发生的是,X在时间10发生了0次,但在15和23发生了1次。 Y在10点钟发生了3次,但在15和23没有。等等。
问题内容: 我有一个熊猫数据框列表,我想将其合并为一个熊猫数据框。我正在使用Python 2.7.10和Pandas 0.16.2 我从以下位置创建了数据框列表: 这将返回数据帧列表 这是一些样本数据 我想将,和组合成一个熊猫数据框。另外,使用该选项时将大表直接读入数据框的方法将非常有帮助。 问题答案: 鉴于所有数据框都具有相同的列,您可以简单地将它们:
问题内容: 我正在寻找一种方法来反向旋转数据框。据我所知,pandas提供了一种pivot或pivot_table方法将EAV df转换为“普通”方法。但是,还有一种方法可以做逆运算吗? 所以给定数据框: 我想将其转换为(EAV模型): 这样做最有效的方法是什么? 问题答案: 假设是索引,将执行以下操作: 如果不是索引,请像这样设置:
问题内容: 我对熊猫有些陌生。我有一个熊猫数据框,它是1行乘23列。 我想将其转换为系列吗?我想知道最pythonic的方法是什么? 我试过了,但是抱怨。它不够聪明,无法意识到它仍然是数学上的“向量”。 谢谢! 问题答案: 它不够聪明,无法意识到它仍然是数学上的“向量”。 可以说它足够聪明,可以识别尺寸差异。:-) 我认为您可以做的最简单的事情是使用位置选择该行,这将为您提供一个Series,其列