当前位置: 首页 > 文档资料 > 计算与推断思维 >

十一、估计

优质
小牛编辑
115浏览
2023-12-01

在前一章中,我们开始开发推断思维的方法。特别是,我们学会了如何使用数据,在世界的两个假设之间做决策。但是我们通常只想知道,某件事情有多大。

例如,在前面的章节中,我们调查了敌人可能拥有的战机数量。在选举年,我们可能想知道有多少选民赞成特定候选人。为了评估目前的经济状况,我们可能会对美国家庭年收入的中位数感兴趣。

在本章中,我们将开发一种估计未知参数的方法。请记住,参数是总体相关的数值。

要弄清参数的值,我们需要数据。如果我们有整个人口的相关数据,我们可以简单地计算参数。

但是,如果人口非常庞大(例如,如果它由美国的所有家庭组成),那么收集整个人口的数据可能过于昂贵和耗时。在这种情况下,数据科学家依赖从人口中随机抽样。

这导致了一个推断问题:如何根据随机样本中的数据,对未知参数做出正确的结论?我们将用推断思维来回答这个问题。

基于随机样本的统计量可能是总体中未知参数的合理估计。例如,你可能希望使用家庭样本的年收入中位数,来估计美国所有家庭的年收入中位数。

但任何统计量的值都取决于样本,样本基于随机抽取。所以每次数据科学家得到了一个基于随机样本的估计,他们都面临一个问题:

“如果样本是不同的,这个估计有多大的不同呢?”

在本章中,你将学习一种回答这个问题的方法。答案将为你提供工具来估算数值参数,并量化估算中的误差量。

我们将以百分位数开始。最有名的百分位数是中位数,通常用于收入数据的摘要。在我们即将开发的估计方法中,其他百分位数也是非常重要的。所以我们一开始要仔细定义百分位数。

百分位数

数值数据可以按照升序或降序排序。因此,数值数据集的值具有等级顺序。百分位数是特定等级的值。

例如,如果你的考试成绩在第 95 个百分位,一个常见的解释是只有 5% 的成绩高于你的成绩。中位数是第 50 个百分位;通常假定数据集中 50% 的值高于中值。

但是,给予百分位一个精确定义,适用于所有等级和所有列表,需要一些谨慎。为了明白为什么,考虑一个极端的例子,一个班级的所有学生在考试中得分为 75 分。那么 75 是中位数的自然候选,但是 50% 的分数高于 75 并不是真的。另外,75 同样是第 95 个或第 25 个百分位数,或任何其他百分位数的自然候选。在定义百分位数时,必须将重复 - 也就是相同的数据值 - 考虑在内。

当相关的索引不明确时,你还必须小心列表到底有多长。例如,10 个值的集合的第 87 个百分位数是多少?有序集合的第 8 个值,还是第 9 个,还是其中的某个位置?

数值的例子

在给出所有百分位数的一般定义之前,我们将把数值集合的第80个百分点定义为集合中的(一定条件的)最小值,它至少与所有值的 80% 一样大。

例如,考虑非洲,南极洲,亚洲,北美洲和南美洲五大洲的大小,四舍五入到最接近的百万平方英里。

sizes = make_array(12, 17, 6, 9, 7)

第 80 个百分位数是(一定条件的)最小值,至少和 80% 的值一样大,也就是五个元素的五分之四。等于 12:

np.sort(sizes)
array([ 6,  7,  9, 12, 17])

第 80 个百分位数是列表中的一个值,也就是 12。你可以看到,80% 的值小于等于它,并且它是列表中满足这个条件的最小值。

与之类似,第 70 个百分位数是该集合中(一定条件的)最小值,至少与 70% 的元素一样大。 现在 5 个元素中的 70% 是“3.5 个元素”,所以第 70 个百分位数是列表中的第 4 个元素。 它是 12,与这些数据的第 80 百分位数相同。

percentile函数

percentile函数接受两个参数:一个 0 到 100 之间的等级,和一个数组。它返回数组相应的百分位数。

percentile(70, sizes)
12

一般定义

p为 0 到 100 之间的数字。集合的第p个百分位数是集合中的(一定条件)的最小值,它至少与p%的所有值一样大。

通过这个定义,可以计算任何值的集合的任何 0 到 100 之间的百分位数,并且它始终是集合的一个元素。

实际上,假设集合中有n个元素。 要找到第p个百分位数:

  • 对集合升序排序。
  • 计算np%(p/100) * n。叫做k
  • 如果k是一个整数,则取有序集合的第k个元素。
  • 如果k不是一个整数,则将其四舍五入到下一个整数,并采用有序集合的那个元素。

示例

scores_and_sections表包含 359 名学生,每个学生一行。 列是学生的讨论分组和期中分数。

scores_and_sections = Table.read_table('scores_by_section.csv')
scores_and_sections
SectionMidterm
122
212
223
214
120
325
419
124
58
614

(省略了 349 列)

scores_and_sections.select('Midterm').hist(bins=np.arange(-0.5, 25.6, 1))

分数的第 85 个百分位数是多少? 为了使用percentile函数,创建包含期中分数的数组scores,并找到第 85 个百分位数:

scores = scores_and_sections.column(1)
percentile(85, scores)
22

根据percentile函数,第 85 个百分点数是 22。为了检查这是否符合我们的新定义,我们直接应用定义。

首先,把分数升序排列:

sorted_scores = np.sort(scores_and_sections.column(1))

数组中有 359 个分数。所以下面,计算 359 的 85%,它是 305.15。

0.85 * 359
305.15

这不是一个整数。 根据我们的定义,中位数是sorted_scores的第 306 个元素,按 Python 的索引约定,它是数组的第 305 项。

# The 306th element of the sorted array

sorted_scores.item(305)
22

它和我们通过使用percentile得到的答案一样。以后,我们会仅仅使用percentile

四分位数

数值集合的第一个四分位数是第 25 个百分分数。 这个术语(quartile)来自第一个季度(quarter)。 第二个四分位数是中位数,第三个四分位数是第 75 个百分位数。

对于我们的分数数据,这些值是:

percentile(25, scores)
11
percentile(50, scores)
16
percentile(75, scores)
20

分数的分布有时归纳为“中等 50%”区间,在第一和第三个四分位数之间。

自举法

一个数据科学家正在使用随机样本中的数据来估计未知参数。她使用样本来计算用作估计值的统计量。

一旦她计算出了统计量的观察值,她就可以把它作为她的估计值,然后顺其自然。 但她是一名数据科学家。 她知道她的随机样本只是众多可能的随机样本之一,因此她的估计只是众多合理估算之一。

这些估计的变化有多大? 为了回答这个问题,似乎她需要从总体中抽取另一个样本,并根据新样本计算一个新的估计值。 但是她没有资源来回到总体中,再抽取一个样本。

这个数据科学家看起来好像卡住了。

幸运的是,一个叫做自举法的好主意可以帮助她。 由于从总体中生成新样本是不可行的,自举法通过称为重采样的方法生成新的随机样本:新样本从原始样本中随机抽取。

在本节中,我们将看到自举法的工作方式和原因。 在本章的其余部分,我们将使用自举法进行推理。

旧金山市的雇员薪资

SF OpenData 是一个网站,旧金山市和县在上面公开提供他们的一些数据。 其中一个数据集包含城市雇员的薪资数据。 其中包括市营医院的医疗专业人员,警察,消防员,运输工人,民选官员以及市内所有其他雇员。

2015 日历年的薪资数据见表sf2015

sf2015 = Table.read_table('san_francisco_2015.csv')
sf2015
Year TypeYearOrganization Group CodeOrganization GroupDepartment CodeDepartmentUnion CodeUnionJob Family CodeJob FamilyJob CodeJobEmployee IdentifierSalariesOvertimeOther SalariesTotal SalaryRetirementHealth/DentalOther BenefitsTotal BenefitsTotal Compensation
Calendar20152Public Works, Transportation & CommerceWTRPUC Water Department21Prof & Tech Engineers - Miscellaneous, Local 212400Lab, Pharmacy & Med Techs2481Water Qualitytech I/II2153882146008214616942.212340.96337.7335620.8117767
Calendar20152Public Works, Transportation & CommerceDPWGeneral Services Agency - Public Works12Carpet, Linoleum and Soft Tile Workers, Local 127300Journeyman Trade7393Soft Floor Coverer545932165.8973.19848.9633987.904587.512634.427221.9341209.8
Calendar20154Community HealthDPHPublic Health790SEIU - Miscellaneous, Local 10211600Payroll, Billing & Accounting1636Health Care Billing Clerk 241541713115757.9807706914697.612424.56370.0633492.2110561
Calendar20154Community HealthDPHPublic Health351Municipal Executive Association - Miscellaneous0900Management2620Food Service Mgr Administrator2671828430.20763.0729193.304223.145208.519431.6538625
Calendar20152Public Works, Transportation & CommerceMTAMunicipal Transportation Agency790SEIU - Miscellaneous, Local 10218200Protection & Apprehension8201School Crossing Guard458107948.75007948.7502873.17616.243489.4111438.2
Calendar20151Public ProtectionPOLPolice911Police Officers' AssociationQ000Police ServicesQ002Police Officer329062235002235490.36286.72176.57953.653188.65
Calendar20154Community HealthDPHPublic Health791SEIU - Staff and Per Diem Nurses, Local 10212300Nursing2328Nurse Practitioner7506187247011704.119895137683.712424.511221.761329.9260281
Calendar20152Public Works, Transportation & CommerceMTAMunicipal Transportation Agency253Transport Workers - Transit Operators, Local 250-A9100Street Transit9163Transit Operator3677366988.53512.882770.3973271.819127.2132035455.137785.3111057
Calendar20156General Administration & FinanceCATCity Attorney311Municipal Attorneys' Association8100Legal & Court8177Attorney (Civil/Criminal)1296313519001562.513675227501.812424.51010350029.3186781
Calendar20153Human Welfare & Neighborhood DevelopmentDSSHuman Services535SEIU - Human Services, Local 10219700Community Development9703Emp & Training Spec 23517970474.8147.281647.2472269.314650.310696.95993.1131340.3103610

(省略了 42979 行)

共有 42,979 名员工,每个人一行。 有许多列包含市政部门隶属关系的信息,以及员工薪酬方案不同部分的详细信息。 这是对应市长 Ed Lee 的一行。

sf2015.where('Job', are.equal_to('Mayor'))
Year TypeYearOrganization Group CodeOrganization GroupDepartment CodeDepartmentUnion CodeUnionJob Family CodeJob FamilyJob CodeJobEmployee IdentifierSalariesOvertimeOther SalariesTotal SalaryRetirementHealth/DentalOther BenefitsTotal BenefitsTotal Compensation
Calendar20156General Administration & FinanceMYRMayor556Elected Officials1100Administrative & Mgmt (Unrep)1190Mayor22433288964002889645811712424.52029390834.5379798

我们要研究最后一栏,总薪酬。 这是员工的工资加上市政府对退休和福利计划的贡献。

日历年的财务方案有时难以理解,因为它们取决于雇用日期,员工是否在城市内部换工作等等。 例如,Total Compensation列中的最低值看起来有点奇怪。

sf2015.sort('Total Compensation')
Year TypeYearOrganization Group CodeOrganization GroupDepartment CodeDepartmentUnion CodeUnionJob Family CodeJob FamilyJob CodeJobEmployee IdentifierSalariesOvertimeOther SalariesTotal SalaryRetirementHealth/DentalOther BenefitsTotal BenefitsTotal Compensation
Calendar20151Public ProtectionFIRFire Department798Firefighters - Miscellaneous, Local 798H000Fire ServicesH002Firefighter43833000000-423.76-423.76-423.76
Calendar20154Community HealthDPHPublic Health790SEIU - Miscellaneous, Local 10219900Public Service Aide9924PS Aide Health Services27871-292.400-292.40-95.58-22.63-118.21-410.61
Calendar20151Public ProtectionJUVJuvenile Probation790SEIU - Miscellaneous, Local 10218300Correction & Detention8320Counselor, Juvenile Hall10517000000-159.12-159.12-159.12
Calendar20156General Administration & FinanceCPCCity Planning21Prof & Tech Engineers - Miscellaneous, Local 211000Information Systems1053IS Business Analyst-Senior18961000000-26.53-26.53-26.53
Calendar20156General Administration & FinanceCPCCity Planning21Prof & Tech Engineers - Miscellaneous, Local 215200Professional Engineering5277Planner 119387000000-9.51-9.51-9.51
Calendar20152Public Works, Transportation & CommercePUCPUC Public Utilities Commission21Prof & Tech Engineers - Miscellaneous, Local 211000Information Systems1044IS Engineer-Principal28988000000-3.1-3.1-3.1
Calendar20151Public ProtectionJUVJuvenile Probation39Stationary Engineers, Local 397300Journeyman Trade7335Senior Stationary Engineer19125000000-0.01-0.01-0.01
Calendar20151Public ProtectionECDDepartment of Emergency Management351Municipal Executive Association - Miscellaneous0900Management0922Manager I30025000000000
Calendar20157General City ResponsibilitiesUNAGeneral Fund Unallocated790SEIU - Miscellaneous, Local 10213200Recreation3280Assistant Recreation Director497840000001.271.271.27
Calendar20154Community HealthDPHPublic Health250SEIU - Health Workers, Local 10212600Dietary & Food2654Cook26768002.212.21000.170.172.38

(省略了 42979 行)

为了便于比较,我们将专注于那些工作时间相当于至少半年的人。 最低工资约为每小时 10 美元,52 周每周 20 小时,工资约为 1 万美元。

sf2015 = sf2015.where('Salaries', are.above(10000))
sf2015.num_rows
36569

总体和参数

让这张超过 36500 行的表格成为我们的总体。 这是总薪资的直方图。

sf_bins = np.arange(0, 700000, 25000)
sf2015.select('Total Compensation').hist(bins=sf_bins)

虽然大部分值都低于 300,000 美元,但有一些还是比较高的。 例如,首席投资官的总薪资不多是 65 万美元。 这就是为什么横轴延伸到了 700,000 美元。

sf2015.sort('Total Compensation', descending=True).show(2)
Year TypeYearOrganization Group CodeOrganization GroupDepartment CodeDepartmentUnion CodeUnionJob Family CodeJob FamilyJob CodeJobEmployee IdentifierSalariesOvertimeOther SalariesTotal SalaryRetirementHealth/DentalOther BenefitsTotal BenefitsTotal Compensation
Calendar20156General Administration & FinanceRETRetirement System351Municipal Executive Association - Miscellaneous1100Administrative & Mgmt (Unrep)1119Chief Investment Officer468815078320050783210505312424.523566.2141044648875
Calendar20156General Administration & FinanceADMGeneral Services Agency - City Admin164Physicians and Dentists - Miscellaneous2500Med Therapy & Auxiliary2598Asst Med Examiner10162793113829.3611443439757456211.612424.514299.182935.2480509

(省略了 36567 行)

现在让参数为总薪资的中位数。

既然我们有能力从总体中得到所有数据,我们可以简单计算参数:

pop_median = percentile(50, sf2015.column('Total Compensation'))
pop_median
110305.78999999999

所有员工的薪酬总额的中位数刚刚超过 110,300 美元。

从实际的角度来看,我们没有理由抽取样本来估计这个参数,因为我们只是知道它的值。 但在本节中,我们假装不知道这个值,看看我们如何根据随机样本来估计它。

在后面的章节中,我们将回到现实,在参数未知的情况下工作。 就目前而言,我们是无所不知的。

随机样本和估计

让我们无放回地随机抽取 500 名员工的样本,并将所选员工的总薪酬的中位数作为我们的参数估计量。

our_sample = sf2015.sample(500, with_replacement=False)
our_sample.select('Total Compensation').hist(bins=sf_bins)

est_median = percentile(50, our_sample.column('Total Compensation'))
est_median
113598.99000000001

样本量很大。 根据平均定律,样本的分布与总体的分布相似,因此样本中位数与总体中位数相差不大(尽管当然并不完全相同)。

所以现在我们有了参数的估计。 但是,如果样本是不同的,估计的值也会不同。 我们希望能够量化估计的值在不同样本间的差异。 这个变化的测量将有助于我们衡量我们可以将参数估计得多么准确。

为了查看样本有多么不同,我们可以从总体中抽取另一个样本,但这样做就作弊了。 我们正试图模仿现实生活,我们不能掌握所有的人口数据。

用某种方式,我们必须得到另一个随机样本,而不从总体中抽样。

自举法:从样本中重采样

我们所做的是,从样本中随机抽样。 我们知道了,大型随机样本可能类似于用于抽取的总体。 这一观察使得数据科学家可以通过自举来提升自己:抽样过程可以通过从样本中抽样来复制。

以下是自举法的步骤,用于生成类似总体的另一个随机样本:

  • 将原始样本看做总体。
  • 从样本中随机抽取样本,与原始样本大小相同。

二次样本的大小与原始样本相同很重要。 原因是估计量的变化取决于样本的大小。 由于我们的原始样本由 500 名员工组成,我们的样本中位数基于 500 个值。 为了看看样本变化多少,我们必须将其与 500 个其他样本的中位数进行比较。

如果我们从大小为 500 的样本中,无放回地随机抽取了 500 次,我们只会得到相同的样本。 通过带放回抽取,我们就可以让新样本与原始样本不同,因为有些员工可能会被抽到一次以上,其他人则完全不会。

为什么这是一个好主意? 按照平均定律,原始样本的分布可能与总体相似,所有“二次样本”的分布可能与原始样本相似。 因此,所有二次样本的分布也可能与总体相似。

二次样本的中位数

回想一下,使用sample方法而没有指定样本大小时,默认情况下样本大小等于用于抽取样本的表的行数。 这是完美的自举! 这是从原始样本中抽取的一个新样本,以及相应的样本中位数。

resample_1 = our_sample.sample()
resample_1.select('Total Compensation').hist(bins=sf_bins)

resampled_median_1 = percentile(50, resample_1.column('Total Compensation'))
resampled_median_1
110001.16

通过重采样,我们有了总体中位数的另一个估计。 通过一次又一次的重采样,我们得到许多这样的估计,因此有了估计的经验分布。

resample_2 = our_sample.sample()
resampled_median_2 = percentile(50, resample_2.column('Total Compensation'))
resampled_median_2
110261.39999999999

自举样本中位数的经验分布

让我们定义一个函数bootstrap_median,该函数接受我们的原始样本,包含变量的列的标签,以及我们想要的自举样本的数量,并返回二次样本的相应中值的数组。

每次我们重采样并找到中位数,我们重复自举过程。 所以自举样本的数量将被称为重复数量。

def bootstrap_median(original_sample, label, replications):
    """Returns an array of bootstrapped sample medians:
    original_sample: table containing the original sample
    label: label of column containing the variable
    replications: number of bootstrap samples
    """
    just_one_column = original_sample.select(label)
    medians = make_array()
    for i in np.arange(replications):
        bootstrap_sample = just_one_column.sample()
        resampled_median = percentile(50, bootstrap_sample.column(0))
        medians = np.append(medians, resampled_median)

    return medians

我们现在将自举过程重复 5000 次。 数组bstrap_medians包含所有 5,000 个自举样本的中位数。 注意代码的运行时间比我们以前的代码要长。 因为要做很多重采样!

bstrap_medians = bootstrap_median(our_sample, 'Total Compensation', 5000)

这是 5000 个中位数的直方图。 红点是总体的参数:它是整个总体的中位数,我们碰巧知道但没有在自举过程中使用。

resampled_medians = Table().with_column('Bootstrap Sample Median', bstrap_medians)

#median_bins=np.arange(100000, 130000, 2500)
#resampled_medians.hist(bins = median_bins)
resampled_medians.hist()

plots.scatter(pop_median, 0, color='red', s=30);

重要的是要记住,红点是固定的:110,305.79 美元,总体的中位数。 经验直方图是随机抽取的结果,将相对于红点随机定位。

请记住,所有这些计算的重点是估计人口中位数,它是红点。我们的估计是所有随机生成的样本中位数,它们的直方图你在上面看到了。 我们希望这些估计量包含参数 - 如果没有,它们就脱线了。

估计量是否捕获了参数

红点正好落在二次样本的中位数的经验直方图中间,而不是尾部的几率有多少? 要回答这个问题,我们必须定义“中间”。 让我们将它看做“红点落在二次样本的中位数的中间 95%”。

以下是二次采样中位数的“中间 95%”的两端:

left = percentile(2.5, bstrap_medians)
left
107652.71000000001
right = percentile(97.5, bstrap_medians)
right
119256.73

总体中位数 110,305 美元在这两个数中间。下面的直方图展示了区间和总体中位数。

#median_bins=np.arange(100000, 130000, 2500)
#resampled_medians.hist(bins = median_bins)
resampled_medians.hist()

plots.plot(make_array(left, right), make_array(0, 0), color='yellow', lw=3, zorder=1)
plots.scatter(pop_median, 0, color='red', s=30, zorder=2);

我们例子中,估计量的“中间 95%”的区间捕获了参数。 但是,这是一个偶然吗?

要查看区间包含参数的频率,我们必须一遍又一遍地运行整个过程。具体而言,我们将重复以下过程 100 次:

  • 从总体中抽取一个大小为 500 的原始样本。
  • 执行 5000 次重复的自举过程,并生成二次样本的中位数的“中间 95%”的区间。
  • 我们最后得到了 100 个区间,并计算其中有多少个包含总体中位数。

剧透警告:自举的统计理论表明,这个数字应该在 95 左右。它可能高于或低于 95,但不会离得太远。

# THE BIG SIMULATION: This one takes several minutes.

# Generate 100 intervals, in the table intervals

left_ends = make_array()
right_ends = make_array()

total_comps = sf2015.select('Total Compensation')

for i in np.arange(100):
    first_sample = total_comps.sample(500, with_replacement=False)
    medians = bootstrap_median(first_sample, 'Total Compensation', 5000)
    left_ends = np.append(left_ends, percentile(2.5, medians))
    right_ends = np.append(right_ends, percentile(97.5, medians))

intervals = Table().with_columns(
    'Left', left_ends,
    'Right', right_ends
)    

对于 100 个重复中的每个,我们得到了一个中位数估计量的区间。

intervals
LeftRight
100547115112
98788.4112129
107981121218
100965114796
102596112056
105386113909
105225116918
102844116712
106584118054
108451118421

(省略了 90 行)

良好的区间是那些包含我们试图估计的参数的区间。 通常参数是未知的,但在本节中,我们碰巧知道参数是什么。

pop_median
110305.78999999999

100 个区间中有多少个包含总体中位数? 这是左端低于且右端高于总体中位数的区间数量。

intervals.where('Left', are.below(pop_median)).where('Right', are.above(pop_median)).num_rows
95

构建所有区间需要花费几分钟时间,但如果你有耐心,请再试一次。最有可能的是,100 个区间中有大约 95 个将是良好的:它们将包含参数。

因为它们有较大的重叠,所以很难在横轴上显示所有的区间 - 毕竟,它们都试图估计相同的参数。下图通过竖直堆叠,在相同轴域上展示的每个区间。纵轴简单地是重复的序号,区间从中生成。

红线是参数所在的位置。良好的区间覆盖了参数;通常有大约 95 个。

如果一个区间不能覆盖这个参数,就是个糟糕的事情。在这个地方,你可以看到红线周围的“亮光”。他们中只有很少 - 通常是大约 5 个 - 但是他们确实存在。

任何基于抽样的方法都有可能脱线。基于随机抽样的方法的优点是,我们可以量化它们可能脱线的频率。

为了总结模拟所示的内容,假设你通过以下过程来估计总体中位数:

从总体中随机抽取一个大样本。 自举你的随机样本,并从新的随机样本中获取估计量。 重复上述步骤数千次,并获得数千个估计量。 挑选所有估计量的“中间 95%”的区间。 这给了你一个估计量的区间。现在,如果重复整个过程 100 次,会得到 100 个区间,那么 100 个区间中的大约 95 个将包含总体的参数。

换句话说,95% 的时间内,这个估计过程捕获了参数。

你可以用一个不同的值代替 95%,只要它不是 100。假设你用 80% 代替了 95%,并保持样本大小为 500。那么你的估计量的区间将比我们这里的模拟要短,因为“中间 80%”是比“中间 95%”更小的范围。只有大约 80% 的区间将包含参数。

置信区间

我们已经开发了一种方法,通过使用随机抽样和自举来估计参数。我们的方法产生一个估计区间,来解释随机样本的机会变异。通过提供一个估计区间而不是一个估计量,我们给自己一些回旋的余地。

在前面的例子中,我们看到我们的估计过程在 95% 的时间内产生了一个良好的区间,一个“良好”的区间就是包含这个参数的区间。对于这个过程的结果很好,我们说我们有 95% 的置信度(信心)。我们的估计区间称为参数的 95% 置信区间,95% 称为区间的置信度。

前一个例子中的情况有点不寻常。因为我们碰巧知道参数的值,所以我们能够检查一个区间是好还是不好,这反过来又帮助我们看到,我们的估计过程每 100 次中有 95 次捕获了参数。

但通常情况下,数据科学家不知道参数的值。这就是他们首先想要估计的原因。在这种情况下,他们通过使用一些方法,类似我们开发的方法,获得未知参数的估计区间。由于统计理论,和我们所看到的演示,数据科学家可以确信,他们产生区间的过程,会以已知百分比的几率,产生一个良好的区间。

总体中位数的置信区间:自举百分位数方法

现在我们使用自举法来估计未知总体的中位数。 数据来自大型医院系统中的新生儿样本; 我们将把它看作是一个简单的随机样本,虽然抽样分多个阶段完成。 Deborah Nolan 和 Terry Speed 的 Stat Labs 拥有一个大数据集的详细信息,这个样本是从中抽取的。

baby表中包含以下母婴偶对的数量:婴儿的出生体重(盎司),孕期天数,母亲的年龄,母亲身高(英寸),孕期体重(磅),母亲是否在孕期吸烟。

baby = Table.read_table('baby.csv')
baby
Birth WeightGestational DaysMaternal AgeMaternal HeightMaternal Pregnancy WeightMaternal Smoker
1202842762100False
1132823364135False
1282792864115True
1082822367125True
136286256293False
1382443362178False
1322452365140False
1202892562125False
1432993066136True
1403512768120False

(省略了 1164 行)

出生体重是新生儿健康的一个重要因素 - 较小的婴儿比较大的婴儿在初期需要更多的医疗护理。 因此,在婴儿出生前估计出生体重是有帮助的。 一种方法是检查出生体重和怀孕天数之间的关系。

这种关系的一个简单的衡量标准是出生体重与怀孕天数的比值。ratios表包含baby的前两列,以及一列ratios。 这一列的第一个条目按以下方式计算:

ratios = baby.select('Birth Weight', 'Gestational Days').with_column(
    'Ratio BW/GD', baby.column('Birth Weight')/baby.column('Gestational Days')
)
ratios
Birth WeightGestational DaysRatio BW/GD
1202840.422535
1132820.400709
1282790.458781
1082820.382979
1362860.475524
1382440.565574
1322450.538776
1202890.415225
1432990.478261
1403510.39886

(省略了 1164 行)

ratios.select('Ratio BW/GD').hist()

一眼望去,直方图看起来相当对称,密度在 4opd 到 4.5opd 的区间内是最大的。 但仔细一看,就可以看出一些比例相当大。 比率的最大值刚好超过 0.78opd,几乎是通常值的两倍。

ratios.sort('Ratio BW/GD', descending=True).take(0)
Birth WeightGestational DaysRatio BW/GD
1161480.783784

中位数提供了通常比例的感觉,因为它不受非常大或非常小的比例的影响。 样本(比值)的中位数约为 0.429opd。

np.median(ratios.column(2))
0.42907801418439717

但是总体中位数是多少? 我们不知道,所以我们会估计它。

我们的方法将与前一节完全相同。 我们将自举样本 5000 次,结果是 5000 个中位数的估计量。 我们 95% 的置信区间将是我们所有估计量的“中间 95%”。

回忆前一节定义的bootstrap_median函数。 我们将调用这个函数,并构造总体(比值)中位数的 95% 置信区间。请记住,ratios表包含来自我们的原始样本的相关数据。

def bootstrap_median(original_sample, label, replications):

    """Returns an array of bootstrapped sample medians:
    original_sample: table containing the original sample
    label: label of column containing the variable
    replications: number of bootstrap samples
    """

    just_one_column = original_sample.select(label)
    medians = make_array()
    for i in np.arange(replications):
        bootstrap_sample = just_one_column.sample()
        resampled_median = percentile(50, bootstrap_sample.column(0))
        medians = np.append(medians, resampled_median)

    return medians
# Generate the medians from 5000 bootstrap samples
bstrap_medians = bootstrap_median(ratios, 'Ratio BW/GD', 5000)
# Get the endpoints of the 95% confidence interval
left = percentile(2.5, bstrap_medians)
right = percentile(97.5, bstrap_medians)

make_array(left, right)
array([ 0.42545455,  0.43262411])

95% 置信区间是 0.425opd 到 0.433opd。 我们估计的总体(出生重量与怀孕天数的比值)中位数,在 0.425opd 到 0.433opd 的范围内。

基于原始样本的估计量 0.429 恰好在区间两端的中间,尽管这通常不是真的。

为了使我们的结果可视化,让我们画出我们自举的中位数的经验直方图,并将置信区间置于横轴上。

resampled_medians = Table().with_column(
    'Bootstrap Sample Median', bstrap_medians
)
resampled_medians.hist(bins=15)
plots.plot(make_array(left, right), make_array(0, 0), color='yellow', lw=8);

这个直方图和区间就像我们在前一节中绘制的直方图和区间,只有一个很大的区别 - 没有显示参数的红点。 我们不知道这个点应该在哪里,或者它是否在区间中。

我们只是有一个估计区间。 这是估计量的 95% 置信区间,因为生成它的过程在 95% 的时间中产生了良好的区间。 那肯定是在随机猜测!

请记住,这个区间是一个大约 95% 的置信区间。 计算中涉及到很多近似值。 近似值并不差,但并不准确。

总体均值的置信区间:自举百分位数方法

我们为中位数所做的事情也可以用于均值。 假设我们想估计总体中的母亲的平均年龄。 自然估计量是样本中的母亲的平均年龄。 这是他们的年龄分布,他们的平均年龄大约是 27.2 岁。

baby.select('Maternal Age').hist()

np.mean(baby.column('Maternal Age'))
27.228279386712096

母亲的平均年龄是多少? 我们不知道这个参数的值。

我们用自举法来估计未知参数。 为此,我们将编辑bootstrap_median的代码,而不是定义函数bootstrap_mean。 代码是相同的,除了统计量是代替中位数的均值,并且收集在一个名为means而不是medians的数组中。

def bootstrap_mean(original_sample, label, replications):

    """Returns an array of bootstrapped sample means:
    original_sample: table containing the original sample
    label: label of column containing the variable
    replications: number of bootstrap samples
    """

    just_one_column = original_sample.select(label)
    means = make_array()
    for i in np.arange(replications):
        bootstrap_sample = just_one_column.sample()
        resampled_mean = np.mean(bootstrap_sample.column(0))
        means = np.append(means, resampled_mean)

    return means
# Generate the means from 5000 bootstrap samples
bstrap_means = bootstrap_mean(baby, 'Maternal Age', 5000)

# Get the endpoints of the 95% confidence interval
left = percentile(2.5, bstrap_means)
right = percentile(97.5, bstrap_means)

make_array(left, right)
array([ 26.89778535,  27.55962521])

95% 置信区间是约 26.9 岁到约 27.6 岁。 也就是说,我们估计的母亲的平均年龄在 26.9 岁到 27.6 岁之间。

注意两端距原始样本均值 27.2 岁的距离。 样本量非常大 - 1174 个母亲 - 所以样本均值变化不大。 我们将在下一章进一步探讨这个观察。

下面显示了 5000 个自举均值的经验直方图,以及总体均值的 95% 置信区间。

resampled_means = Table().with_column(
    'Bootstrap Sample Mean', bstrap_means
)
resampled_means.hist(bins=15)
plots.plot(make_array(left, right), make_array(0, 0), color='yellow', lw=8);

原始样本的均值(27.23 岁)同样接近区间中心。 这并不奇怪,因为每个自举样本都是从相同的原始样本中抽取的。 自举样本的均值大约对称分布原始样本(从其中抽取)的均值的两侧。

还要注意,即使所采样的年龄的直方图完全不是对称的,二次样本的均值的经验直方图也是大致对称的钟形:

baby.select('Maternal Age').hist()

这是概率统计的中心极限定理的结果。 在后面的章节中,我们将看到这个定理是什么。

80% 置信区间

你可以使用自举法来构建任意水平的置信区间。 例如,要为总体中的平均年龄构建 80% 置信区间,可以选取二次样本的均值的“中间 80%”。 所以你会希望为两个尾巴的每一个分配 10%,因此端点是二次样本的均值的第 10 和第 90 个百分位数。

left_80 = percentile(10, bstrap_means)
right_80 = percentile(90, bstrap_means)
make_array(left_80, right_80)
array([ 27.01192504,  27.439523  ])
resampled_means.hist(bins=15)
plots.plot(make_array(left_80, right_80), make_array(0, 0), color='yellow', lw=8);

这个 80% 置信区间比 95% 置信区间要短得多。 它只是约定 27.0 岁到约 27.4 岁。 虽然这是估计量的较窄区间,你知道这个过程在 80% 的时间内产生良好的区间。

之前过程产生了较宽的区间,但是我们对产生它的过程拥有更高的置信度。

为了以较高的置信度获得较窄的置信区间,你必须从较大的样本开始。 我们将在下一章看到为什么。

总体比例的置信区间:自举百分位数方法

在样本中,39% 的母亲在怀孕期间吸烟。

baby.where('Maternal Smoker', are.equal_to(True)).num_rows/baby.num_rows
0.3909710391822828

以下对观察很实用,这个比例也可以通过数组操作来计算:

smoking = baby.column('Maternal Smoker')
np.count_nonzero(smoking)/len(smoking)
0.3909710391822828

译者注:

np.count_nonzero(arr)等价于np.sum(arr != 0)

总体中有百分之多少的母亲在怀孕期间吸烟? 这是一个未知的参数,我们可以通过自举置信区间来估计。 这个过程中的步骤与我们用来估计总体均值和中位数的步骤相似。

我们将首先定义一个函数bootstrap_proportion,返回一个自举样本的比例的数组。 我们再一次通过编辑bootstrap_median的定义来实现它。 计算中唯一的变化是用二次样本的吸烟者比例代替中位数。 该代码假定数据列由布尔值组成。 其他的改变只是数组的名字,来帮助我们阅读和理解我们的代码。

def bootstrap_proportion(original_sample, label, replications):

    """Returns an array of bootstrapped sample proportions:
    original_sample: table containing the original sample
    label: label of column containing the Boolean variable
    replications: number of bootstrap samples
    """

    just_one_column = original_sample.select(label)
    proportions = make_array()
    for i in np.arange(replications):
        bootstrap_sample = just_one_column.sample()
        resample_array = bootstrap_sample.column(0)
        resampled_proportion = np.count_nonzero(resample_array)/len(resample_array)
        proportions = np.append(proportions, resampled_proportion)

    return proportions

让我们使用bootstrap_proportion来构建总体的母亲吸烟者百分比的 95% 置信区间。 该代码类似于均值和中位数的相应代码。

# Generate the proportions from 5000 bootstrap samples
bstrap_props = bootstrap_proportion(baby, 'Maternal Smoker', 5000)

# Get the endpoints of the 95% confidence interval
left = percentile(2.5, bstrap_props)
right = percentile(97.5, bstrap_props)

make_array(left, right)
array([ 0.36286201,  0.41908007])

置信区间是 36% 到 42%。原始样本的百分比 39% 非常接近于区间的中心。你可以在下面看到:

resampled_proportions = Table().with_column(
    'Bootstrap Sample Proportion', bstrap_props
)
resampled_proportions.hist(bins=15)
plots.plot(make_array(left, right), make_array(0, 0), color='yellow', lw=8);

自举法的注意事项

自举法是一个优雅而强大的方法。在使用之前,记住一些要点非常重要。

以大型随机样本开始。如果你不这样做,该方法可能无法正常工作。它的成功基于大型随机样本(因此也从样本中重采样)。平均定律说,如果随机样本很大,这很可能是真的。

为了近似统计量的概率分布,最好多次复制重采样过程。数千次重复将产生样本中位数分布的正确近似,特别是如果总体分布存在峰值并且不是非常不对称的话。在我们的例子中,我们使用了 5000 次重复,但一般会推荐 10000 次。

自举百分位数方法适用于基于大型随机样本,估计总体中位数或均值。但是,它也有其局限性,所有的估计方法也是如此。例如,在以下情况下,它预期没有效果。

  • 目标是估计总体中的最小值或最大值,或非常低或非常高的百分位数,或受总体中稀有元素影响较大的参数。
  • 统计量的概率分布不是近似钟形的。
  • 原始样本非常小,比如 10 或 15。

使用置信区间

def bootstrap_median(original_sample, label, replications):

    """Returns an array of bootstrapped sample medians:
    original_sample: table containing the original sample
    label: label of column containing the variable
    replications: number of bootstrap samples
    """

    just_one_column = original_sample.select(label)
    medians = make_array()
    for i in np.arange(replications):
        bootstrap_sample = just_one_column.sample()
        resampled_median = percentile(50, bootstrap_sample.column(0))
        medians = np.append(medians, resampled_median)

    return medians
def bootstrap_mean(original_sample, label, replications):

    """Returns an array of bootstrapped sample means:
    original_sample: table containing the original sample
    label: label of column containing the variable
    replications: number of bootstrap samples
    """

    just_one_column = original_sample.select(label)
    means = make_array()
    for i in np.arange(replications):
        bootstrap_sample = just_one_column.sample()
        resampled_mean = np.mean(bootstrap_sample.column(0))
        means = np.append(means, resampled_mean)

    return means
def bootstrap_proportion(original_sample, label, replications):

    """Returns an array of bootstrapped sample proportions:
    original_sample: table containing the original sample
    label: label of column containing the Boolean variable
    replications: number of bootstrap samples
    """

    just_one_column = original_sample.select(label)
    proportions = make_array()
    for i in np.arange(replications):
        bootstrap_sample = just_one_column.sample()
        resample_array = bootstrap_sample.column(0)
        resampled_proportion = np.count_nonzero(resample_array)/len(resample_array)
        proportions = np.append(proportions, resampled_proportion)

    return proportions

置信区间只有一个目的 - 根据随机样本中的数据估计未知参数。在最后一节中,我们说区间(36%, 42%)是总体中吸烟者百分比的约 95% 的置信区间。正式的表述方式为,据我们估计,总体中的吸烟者比例在 36% 到 42% 之间,我们的估计过程在 95% 的时间内是正确的。

克制住将置信区间用于其他目的的冲动,这很重要。例如,回想一下,我们计算了区间(26.9 yr, 27.6 yr),作为母亲平均年龄的约 95% 的置信区间。区间的一个令人惊讶的常见误用是得出这样的结论,约 95% 的女性在 26.9 岁至 27.6 岁之间。你不需要怎么了解置信区间,来查看这是不是正确的 - 你不会预计 95% 的母亲的年龄在这个较小的范围内。实际上,抽样年龄的直方图显示出相当多的变化。

baby = Table.read_table('baby.csv')
baby.select('Maternal Age').hist()

抽样年龄的一小部分在(26.9, 27.6)的区间内,你可能会预计总体中的百分比很小。 区间只是估计一个数字:总体中所有年龄的平均值。

但是,除了仅仅告诉我们这个参数有多大之外,用置信区间来估计一个参数确实有重要的用处。

使用置信区间来检验假设

我们总体(年龄)均值的 95% 置信区间是 26.9 岁到 27.6 岁。假设有人想要测试以下假设:

原假设。人口的平均年龄是 30 岁。

备选假设。人口的平均年龄不是 30 岁。

那么,如果你使用 5% 的截断值作为 P 值,则会拒绝原假设。这是因为总体平均值 30 不在 95% 置信区间内。在 5% 的显着性水平上,30 对于人口平均值并不合理。

置信区间的使用是置信区间和检验之间二元性结果:如果你正在测试总体平均值是否是特定值 x,并且你使用的 5% 截断值作为 P 值,那么如果 x 不在平均值的 95% 置信区间内,你将拒绝原零假设。

这可以由统计理论来确定。在实践中,它只是归结为,检查原假设中指定的值是否在置信区间内。

如果你使用 1% 的截断值作为 P 值,你必须检查,原假设中指定的值是否在总体均值的 99% 置信区间内。

粗略地说,如果样本量很大,这些陈述也适用于总体比例。

虽然我们现在有一种方法,使用置信区间来检验一种特定假设,但是你可能想知道,测试总体(年龄)的均值是否等于 30 的意义。实际上,这个意义并不清楚。但是在某些情况下,对这种假设的检验既自然又有用。

我们将在数据的背景下来研究它,这些数据是霍奇金病治疗的随机对照试验中收集的信息的子集。霍奇金病是一种通常影响年轻人的癌症。这种疾病是可以治愈的,但治疗可能非常艰难。该试验的目的是找出治疗癌症的剂量,并且将对患者的不利影响最小化。

这张表格包含治疗对 22 名患者肺部的影响的数据。这些列是:

  • 身高(厘米)
  • 覆盖物辐射的测量(颈部,胸部,手臂下)
  • 化疗的测量
  • 基线下,即在治疗开始时的肺健康得分;较高的分数对应于更健康的肺
  • 治疗后 15 个月,相同的肺的健康得分
hodgkins = Table.read_table('hodgkins.csv')
hodgkins
heightradchemobasemonth15
164679180160.5787.77
16831118098.2467.62
173388239129.04133.33
15737016885.4181.28
16046815167.9479.26
17034196150.5180.97
163453134129.8869.24
17552926487.4556.48
185392240149.84106.99
17847921692.2473.43

(省略了 12 行)

我们将比较基准和 15 个月的得分。 由于每行对应一个病人,我们说基线得分的样本和 15 个月得分的样本是成对的 - 它们不是每组 22 个值的两组,而是 22 对值,每个病人一个。

一眼望去,你可以看到,15 个月的得分往往低于基线得分 - 抽样患者的肺似乎在治疗后 15 个月更差。 这个由drop列主要是正值来证实,它是基线得分减去 15 个月的得分。

hodgkins = hodgkins.with_column(
    'drop', hodgkins.column('base') - hodgkins.column('month15')
)
hodgkins

heightradchemobasemonth15drop
164679180160.5787.7772.8
16831118098.2467.6230.62
173388239129.04133.33-4.29
15737016885.4181.284.13
16046815167.9479.26-11.32
17034196150.5180.9769.54
163453134129.8869.2460.64
17552926487.4556.4830.97
185392240149.84106.9942.85
17847921692.2473.4318.81

(省略了 12 行)

hodgkins.select('drop').hist(bins=np.arange(-20, 81, 20))
np.mean(hodgkins.column('drop'))
28.615909090909096

但是,这可能是机会变异的结果吗? 似乎并不如此,但数据来自随机样本。 难道在整个人群中,平均下降值只有 0 吗?

为了回答这个问题,我们可以设定两个假设:

原假设:总体(下降值)均值为 0。

备选假设:总体(下降值)均值不为 0。

为了使用 1% 的截断值作为 P 值来验证这个假设,让我们为总体(下降值)均值构建近似 99% 置信区间。

bstrap_means = bootstrap_mean(hodgkins, 'drop', 10000)

left = percentile(0.5, bstrap_means)
right = percentile(99.5, bstrap_means)

make_array(left, right)
array([ 17.25045455,  40.60136364])
resampled_means = Table().with_column(
    'Bootstrap Sample Mean', bstrap_means
)
resampled_means.hist()
plots.plot(make_array(left, right), make_array(0, 0), color='yellow', lw=8);

总体均值的 99% 置信区间是约 17 到约 40。区间不包含 0。因此,我们拒绝原假设。

但是请注意,我们所做的不仅仅是简单得出结论:总体均值不是 0,我们估计了均值的幅度是多大。这比仅仅说“不是 0”更有用。

对于准确性的注解:我们的置信区间相当宽泛,主要有两个原因:

  • 置信水平很高(99%)。
  • 与我们之前的例子相比,样本量相对较小。

在下一章中,我们将研究样本大小如何影响准确性。我们还将研究,样本均值的经验分布为何经常出现钟形,尽管底层数据的分布根本不是钟形的。

尾注

一个领域的术语通常来自该领域的主要研究人员。首先提出自举技术的 Brad Efron 用了一个美国血统的术语。中国统计学家不甘示弱,提出了自己的方法