设计

优质
小牛编辑
136浏览
2023-12-01

design

majordesignelements

We designed Kafka to be able to act as a unified platform for handling all the real-time data feeds a large company might have. To do this we had to think through a fairly broad set of use cases.

我们将Kafka设计为一个能处理大公司可能存在的所有实时数据流的统一平台。为了实现这个目标我们考虑了各式各样的应用场景。

It would have to have high-throughput to support high volume event streams such as real-time log aggregation.

它必须有很高的吞吐量来支撑像实时日志合并这类高容量的事件流。

It would need to deal gracefully with large data backlogs to be able to support periodic data loads from offline systems.

它必须能很好的处理数据积压问题来支撑像线下系统周期性的导入数据的场景。

It also meant the system would have to handle low-latency delivery to handle more traditional messaging use-cases.

同时它也需要可以处理低延迟的分发需求来支撑与传统消息机制类似的应用场景。

We wanted to support partitioned, distributed, real-time processing of these feeds to create new, derived feeds. This motivated our partitioning and consumer model.

我们还希望它支持分区、分布式、消息流的实时创建、分发处理。这些初衷影响着我们的分区和消费者模型。

Finally in cases where the stream is fed into other data systems for serving, we knew the system would have to be able to guarantee fault-tolerance in the presence of machine failures.

最后在作为信息流上游为其它数据系统提供服务的场景下,我们也深知系统必须能够提供在主机故障时的容错担保。

Supporting these uses led us to a design with a number of unique elements, more akin to a database log than a traditional messaging system. We will outline some elements of the design in the following sections.

为了对上述应用场景的支持最终导致我们设计了一系列更相似于数据库日志而不是传统消息系统的元素。我们将在后续段落中概述其中的某些设计元素。

persistence

design_filesystem

Kafka relies heavily on the filesystem for storing and caching messages. There is a general perception that “disks are slow” which makes people skeptical that a persistent structure can offer competitive performance. In fact disks are both much slower and much faster than people expect depending on how they are used; and a properly designed disk structure can often be as fast as the network.

Kafka在消息的存储和缓存中重度依赖文件系统。因为“磁盘慢”这个普遍性的认知,常常使人们怀疑一个这样的持久化结构是否能提供所需的性能。但实际上磁盘因为使用的方式不同,它可能比人们预想的慢很多也可能比人们预想的快很多;而且一个合理设计的磁盘文件结构常常可以使磁盘运行的和网络一样快。

The key fact about disk performance is that the throughput of hard drives has been diverging from the latency of a disk seek for the last decade. As a result the performance of linear writes on a JBOD configuration with six 7200rpm SATA RAID-5 array is about 600MB\/sec but the performance of random writes is only about 100k\/sec—a difference of over 6000X. These linear reads and writes are the most predictable of all usage patterns, and are heavily optimized by the operating system. A modern operating system provides read-ahead and write-behind techniques that prefetch data in large block multiples and group smaller logical writes into large physical writes. A further discussion of this issue can be found in this ACM Queue article; they actually find thatsequential disk access can in some cases be faster than random memory access!

磁盘性能的核心指标在过去的十年间已经从磁盘的寻道延迟变成了硬件驱动的吞吐量。故此在一个JBOD 操作的由6张7200转磁盘组成的RAID-5阵列之上的线性写操作的性能能达到600MB\/sec左右,但是它的随机写性能却只有100k\/sec左右,两者之间相差了6000倍以上。因为线性的读操作和写操作是最常见的磁盘应用模式,并且这也被操作系统进行了高度的优化。现在的操作系统都提供了预读取和写合并技术、即预读取数倍于数据的大文件块和将多个小的逻辑写操作合并成一个大的物理写操作的技术。关于这个话题的进一步的讨论可以参照 ACM Queue article;他们发现实际上线性的磁盘访问在某些场景下比随机的内存访问还快!

To compensate for this performance divergence, modern operating systems have become increasingly aggressive in their use of main memory for disk caching. A modern OS will happily divert all free memory to disk caching with little performance penalty when the memory is reclaimed. All disk reads and writes will go through this unified cache. This feature cannot easily be turned off without using direct I\/O, so even if a process maintains an in-process cache of the data, this data will likely be duplicated in OS pagecache, effectively storing everything twice.

为了填补这个性能的差异,现在操作系统越来越激进的使用它们的主内存来作为磁盘的缓冲。现代的操作系统都非常乐意将 所有的 空闲的内存作为磁盘的缓存,虽然这将在内存重分配期间带来一点性能影响。所有的磁盘的读写操作都会经过在这块统一的缓存。而且这个特性除非使用 direct I\/O 技术很难被关闭掉,所以即使一个进程在进程内维护了数据的缓存,实际上这些数据依旧在操作系统的页缓存上存在一个副本,实际上所有的数据都被存储了两次。

Furthermore we are building on top of the JVM, and anyone who has spent any time with Java memory usage knows two things:

另外我们是基于JVM进行建设的,任何一个稍微了解Java内存模型的人都知道以下两点:

  1. The memory overhead of objects is very high, often doubling the size of the data stored (or worse).

  2. 对象的内存占用是非常高,常常是数据存储空间的两倍以上。

  3. Java garbage collection becomes increasingly fiddly and slow as the in-heap data increases.

  4. Java的内存回收随着堆内数据的增长会变得更加繁琐和缓慢。

As a result of these factors using the filesystem and relying on pagecache is superior to maintaining an in-memory cache or other structure—we at least double the available cache by having automatic access to all free memory, and likely double again by storing a compact byte structure rather than individual objects. Doing so will result in a cache of up to 28-30GB on a 32GB machine without GC penalties. Furthermore this cache will stay warm even if the service is restarted, whereas the in-process cache will need to be rebuilt in memory (which for a 10GB cache may take 10 minutes) or else it will need to start with a completely cold cache (which likely means terrible initial performance). This also greatly simplifies the code as all logic for maintaining coherency between the cache and filesystem is now in the OS, which tends to do so more efficiently and more correctly than one-off in-process attempts. If your disk usage favors linear reads then read-ahead is effectively pre-populating this cache with useful data on each disk read.

综上所述,使用文件系统和页缓存相较于维护一个内存缓存或者其它结构更占优势—我们通过自动化的访问所有空闲内存的能力将缓存的空间扩大了至少两倍,之后又因为保存压缩的字节结构而不是单独对象结构又将此扩充了两倍以上。最终这使我们在一个32G的主机之上拥有了一个高达28-30G的没有GC问题的缓存。而且这个缓存即使在服务重启之后也能保持热度,相反进程内的缓存要么还需要重建预热(10G的缓存可能耗时10分钟)要么就从一个完全空白的缓冲开始服务(这意味着初始化期间性能将很差)。同时这也很大的简化了代码,因为所有的维护缓存和文件系统之间正确性逻辑现在都在操作系统中了,这常常比重复造轮子更加高效和正确。如果你的磁盘使用方式更倾向与线性读取,预读取技术将在每次磁盘读操作时将有效的数据高效的预填充到这些缓存中。

This suggests a design which is very simple: rather than maintain as much as possible in-memory and flush it all out to the filesystem in a panic when we run out of space, we invert that. All data is immediately written to a persistent log on the filesystem without necessarily flushing to disk. In effect this just means that it is transferred into the kernel’s pagecache.

这使人想到一个非常简单的设计:相对于尽可能多的维护内存内结构而且要时刻注意在空间不足时谨记要将它们Flush到文件系统中,我们可以颠覆这种做法。所有的数据被立即写入一个不需要flush磁盘操作的持久化的文件系统的log文件中。实际上这意味着这些数据是被传送到了内核的页缓存上。

This style of pagecache-centric design is described in an article on the design of Varnish here (along with a healthy dose of arrogance).

这种基于页缓存的设计可以参见在这篇关于Varnish的论文

design_constanttime

The persistent data structure used in messaging systems are often a per-consumer queue with an associated BTree or other general-purpose random access data structures to maintain metadata about messages. BTrees are the most versatile data structure available, and make it possible to support a wide variety of transactional and non-transactional semantics in the messaging system. They do come with a fairly high cost, though: Btree operations are O(log N). Normally O(log N) is considered essentially equivalent to constant time, but this is not true for disk operations. Disk seeks come at 10 ms a pop, and each disk can do only one seek at a time so parallelism is limited. Hence even a handful of disk seeks leads to very high overhead. Since storage systems mix very fast cached operations with very slow physical disk operations, the observed performance of tree structures is often superlinear as data increases with fixed cache—i.e. doubling your data makes things much worse then twice as slow.

Intuitively a persistent queue could be built on simple reads and appends to files as is commonly the case with logging solutions. This structure has the advantage that all operations are O(1) and reads do not block writes or each other. This has obvious performance advantages since the performance is completely decoupled from the data size—one server can now take full advantage of a number of cheap, low-rotational speed 1+TB SATA drives. Though they have poor seek performance, these drives have acceptable performance for large reads and writes and come at 1\/3 the price and 3x the capacity.

Having access to virtually unlimited disk space without any performance penalty means that we can provide some features not usually found in a messaging system. For example, in Kafka, instead of attempting to delete messages as soon as they are consumed, we can retain messages for a relatively long period (say a week). This leads to a great deal of flexibility for consumers, as we will describe.

maximizingefficiency

We have put significant effort into efficiency. One of our primary use cases is handling web activity data, which is very high volume: each page view may generate dozens of writes. Furthermore we assume each message published is read by at least one consumer (often many), hence we strive to make consumption as cheap as possible.

We have also found, from experience building and running a number of similar systems, that efficiency is a key to effective multi-tenant operations. If the downstream infrastructure service can easily become a bottleneck due to a small bump in usage by the application, such small changes will often create problems. By being very fast we help ensure that the application will tip-over under load before the infrastructure. This is particularly important when trying to run a centralized service that supports dozens or hundreds of applications on a centralized cluster as changes in usage patterns are a near-daily occurrence.

We discussed disk efficiency in the previous section. Once poor disk access patterns have been eliminated, there are two common causes of inefficiency in this type of system: too many small I\/O operations, and excessive byte copying.

The small I\/O problem happens both between the client and the server and in the server’s own persistent operations.

To avoid this, our protocol is built around a “message set” abstraction that naturally groups messages together. This allows network requests to group messages together and amortize the overhead of the network roundtrip rather than sending a single message at a time. The server in turn appends chunks of messages to its log in one go, and the consumer fetches large linear chunks at a time.

This simple optimization produces orders of magnitude speed up. Batching leads to larger network packets, larger sequential disk operations, contiguous memory blocks, and so on, all of which allows Kafka to turn a bursty stream of random message writes into linear writes that flow to the consumers.

The other inefficiency is in byte copying. At low message rates this is not an issue, but under load the impact is significant. To avoid this we employ a standardized binary message format that is shared by the producer, the broker, and the consumer (so data chunks can be transferred without modification between them).

The message log maintained by the broker is itself just a directory of files, each populated by a sequence of message sets that have been written to disk in the same format used by the producer and consumer. Maintaining this common format allows optimization of the most important operation: network transfer of persistent log chunks. Modern unix operating systems offer a highly optimized code path for transferring data out of pagecache to a socket; in Linux this is done with the sendfile system call.

To understand the impact of sendfile, it is important to understand the common data path for transfer of data from file to socket:

  1. The operating system reads data from the disk into pagecache in kernel space
  2. The application reads the data from kernel space into a user-space buffer
  3. The application writes the data back into kernel space into a socket buffer
  4. The operating system copies the data from the socket buffer to the NIC buffer where it is sent over the network

This is clearly inefficient, there are four copies and two system calls. Using sendfile, this re-copying is avoided by allowing the OS to send the data from pagecache to the network directly. So in this optimized path, only the final copy to the NIC buffer is needed.

We expect a common use case to be multiple consumers on a topic. Using the zero-copy optimization above, data is copied into pagecache exactly once and reused on each consumption instead of being stored in memory and copied out to kernel space every time it is read. This allows messages to be consumed at a rate that approaches the limit of the network connection.

This combination of pagecache and sendfile means that on a Kafka cluster where the consumers are mostly caught up you will see no read activity on the disks whatsoever as they will be serving data entirely from cache.

For more background on the sendfile and zero-copy support in Java, see this article.

design_compression

In some cases the bottleneck is actually not CPU or disk but network bandwidth. This is particularly true for a data pipeline that needs to send messages between data centers over a wide-area network. Of course the user can always compress its messages one at a time without any support needed from Kafka, but this can lead to very poor compression ratios as much of the redundancy is due to repetition between messages of the same type (e.g. field names in JSON or user agents in web logs or common string values). Efficient compression requires compressing multiple messages together rather than compressing each message individually.

Kafka supports this by allowing recursive message sets. A batch of messages can be clumped together compressed and sent to the server in this form. This batch of messages will be written in compressed form and will remain compressed in the log and will only be decompressed by the consumer.

Kafka supports GZIP, Snappy and LZ4 compression protocols. More details on compression can be found here.

theproducer

design_loadbalancing

The producer sends data directly to the broker that is the leader for the partition without any intervening routing tier. To help the producer do this all Kafka nodes can answer a request for metadata about which servers are alive and where the leaders for the partitions of a topic are at any given time to allow the producer to appropriately direct its requests.

The client controls which partition it publishes messages to. This can be done at random, implementing a kind of random load balancing, or it can be done by some semantic partitioning function. We expose the interface for semantic partitioning by allowing the user to specify a key to partition by and using this to hash to a partition (there is also an option to override the partition function if need be). For example if the key chosen was a user id then all data for a given user would be sent to the same partition. This in turn will allow consumers to make locality assumptions about their consumption. This style of partitioning is explicitly designed to allow locality-sensitive processing in consumers.

design_asyncsend

Batching is one of the big drivers of efficiency, and to enable batching the Kafka producer will attempt to accumulate data in memory and to send out larger batches in a single request. The batching can be configured to accumulate no more than a fixed number of messages and to wait no longer than some fixed latency bound (say 64k or 10 ms). This allows the accumulation of more bytes to send, and few larger I\/O operations on the servers. This buffering is configurable and gives a mechanism to trade off a small amount of additional latency for better throughput.

Details on configuration and the api for the producer can be found elsewhere in the documentation.

theconsumer

The Kafka consumer works by issuing “fetch” requests to the brokers leading the partitions it wants to consume. The consumer specifies its offset in the log with each request and receives back a chunk of log beginning from that position. The consumer thus has significant control over this position and can rewind it to re-consume data if need be.

design_pull

An initial question we considered is whether consumers should pull data from brokers or brokers should push data to the consumer. In this respect Kafka follows a more traditional design, shared by most messaging systems, where data is pushed to the broker from the producer and pulled from the broker by the consumer. Some logging-centric systems, such as Scribe and Apache Flume, follow a very different push-based path where data is pushed downstream. There are pros and cons to both approaches. However, a push-based system has difficulty dealing with diverse consumers as the broker controls the rate at which data is transferred. The goal is generally for the consumer to be able to consume at the maximum possible rate; unfortunately, in a push system this means the consumer tends to be overwhelmed when its rate of consumption falls below the rate of production (a denial of service attack, in essence). A pull-based system has the nicer property that the consumer simply falls behind and catches up when it can. This can be mitigated with some kind of backoff protocol by which the consumer can indicate it is overwhelmed, but getting the rate of transfer to fully utilize (but never over-utilize) the consumer is trickier than it seems. Previous attempts at building systems in this fashion led us to go with a more traditional pull model.

Another advantage of a pull-based system is that it lends itself to aggressive batching of data sent to the consumer. A push-based system must choose to either send a request immediately or accumulate more data and then send it later without knowledge of whether the downstream consumer will be able to immediately process it. If tuned for low latency, this will result in sending a single message at a time only for the transfer to end up being buffered anyway, which is wasteful. A pull-based design fixes this as the consumer always pulls all available messages after its current position in the log (or up to some configurable max size). So one gets optimal batching without introducing unnecessary latency.

The deficiency of a naive pull-based system is that if the broker has no data the consumer may end up polling in a tight loop, effectively busy-waiting for data to arrive. To avoid this we have parameters in our pull request that allow the consumer request to block in a “long poll” waiting until data arrives (and optionally waiting until a given number of bytes is available to ensure large transfer sizes).

You could imagine other possible designs which would be only pull, end-to-end. The producer would locally write to a local log, and brokers would pull from that with consumers pulling from them. A similar type of “store-and-forward” producer is often proposed. This is intriguing but we felt not very suitable for our target use cases which have thousands of producers. Our experience running persistent data systems at scale led us to feel that involving thousands of disks in the system across many applications would not actually make things more reliable and would be a nightmare to operate. And in practice we have found that we can run a pipeline with strong SLAs at large scale without a need for producer persistence.

design_consumerposition

Keeping track of what has been consumed is, surprisingly, one of the key performance points of a messaging system.

Most messaging systems keep metadata about what messages have been consumed on the broker. That is, as a message is handed out to a consumer, the broker either records that fact locally immediately or it may wait for acknowledgement from the consumer. This is a fairly intuitive choice, and indeed for a single machine server it is not clear where else this state could go. Since the data structures used for storage in many messaging systems scale poorly, this is also a pragmatic choice—since the broker knows what is consumed it can immediately delete it, keeping the data size small.

What is perhaps not obvious is that getting the broker and consumer to come into agreement about what has been consumed is not a trivial problem. If the broker records a message as consumed immediately every time it is handed out over the network, then if the consumer fails to process the message (say because it crashes or the request times out or whatever) that message will be lost. To solve this problem, many messaging systems add an acknowledgement feature which means that messages are only marked as sent not consumed when they are sent; the broker waits for a specific acknowledgement from the consumer to record the message asconsumed. This strategy fixes the problem of losing messages, but creates new problems. First of all, if the consumer processes the message but fails before it can send an acknowledgement then the message will be consumed twice. The second problem is around performance, now the broker must keep multiple states about every single message (first to lock it so it is not given out a second time, and then to mark it as permanently consumed so that it can be removed). Tricky problems must be dealt with, like what to do with messages that are sent but never acknowledged.

Kafka handles this differently. Our topic is divided into a set of totally ordered partitions, each of which is consumed by one consumer at any given time. This means that the position of a consumer in each partition is just a single integer, the offset of the next message to consume. This makes the state about what has been consumed very small, just one number for each partition. This state can be periodically checkpointed. This makes the equivalent of message acknowledgements very cheap.

There is a side benefit of this decision. A consumer can deliberately rewind back to an old offset and re-consume data. This violates the common contract of a queue, but turns out to be an essential feature for many consumers. For example, if the consumer code has a bug and is discovered after some messages are consumed, the consumer can re-consume those messages once the bug is fixed.

design_offlineload

Scalable persistence allows for the possibility of consumers that only periodically consume such as batch data loads that periodically bulk-load data into an offline system such as Hadoop or a relational data warehouse.

In the case of Hadoop we parallelize the data load by splitting the load over individual map tasks, one for each node\/topic\/partition combination, allowing full parallelism in the loading. Hadoop provides the task management, and tasks which fail can restart without danger of duplicate data—they simply restart from their original position.

semantics

Now that we understand a little about how producers and consumers work, let’s discuss the semantic guarantees Kafka provides between producer and consumer. Clearly there are multiple possible message delivery guarantees that could be provided:

  • At most once—Messages may be lost but are never redelivered.
  • At least once—Messages are never lost but may be redelivered.
  • Exactly once—this is what people actually want, each message is delivered once and only once.

It’s worth noting that this breaks down into two problems: the durability guarantees for publishing a message and the guarantees when consuming a message.

Many systems claim to provide “exactly once” delivery semantics, but it is important to read the fine print, most of these claims are misleading (i.e. they don’t translate to the case where consumers or producers can fail, cases where there are multiple consumer processes, or cases where data written to disk can be lost).

Kafka’s semantics are straight-forward. When publishing a message we have a notion of the message being “committed” to the log. Once a published message is committed it will not be lost as long as one broker that replicates the partition to which this message was written remains “alive”. The definition of alive as well as a description of which types of failures we attempt to handle will be described in more detail in the next section. For now let’s assume a perfect, lossless broker and try to understand the guarantees to the producer and consumer. If a producer attempts to publish a message and experiences a network error it cannot be sure if this error happened before or after the message was committed. This is similar to the semantics of inserting into a database table with an autogenerated key.

These are not the strongest possible semantics for publishers. Although we cannot be sure of what happened in the case of a network error, it is possible to allow the producer to generate a sort of “primary key” that makes retrying the produce request idempotent. This feature is not trivial for a replicated system because of course it must work even (or especially) in the case of a server failure. With this feature it would suffice for the producer to retry until it receives acknowledgement of a successfully committed message at which point we would guarantee the message had been published exactly once. We hope to add this in a future Kafka version.

Not all use cases require such strong guarantees. For uses which are latency sensitive we allow the producer to specify the durability level it desires. If the producer specifies that it wants to wait on the message being committed this can take on the order of 10 ms. However the producer can also specify that it wants to perform the send completely asynchronously or that it wants to wait only until the leader (but not necessarily the followers) have the message.

Now let’s describe the semantics from the point-of-view of the consumer. All replicas have the exact same log with the same offsets. The consumer controls its position in this log. If the consumer never crashed it could just store this position in memory, but if the consumer fails and we want this topic partition to be taken over by another process the new process will need to choose an appropriate position from which to start processing. Let’s say the consumer reads some messages — it has several options for processing the messages and updating its position.

  1. It can read the messages, then save its position in the log, and finally process the messages. In this case there is a possibility that the consumer process crashes after saving its position but before saving the output of its message processing. In this case the process that took over processing would start at the saved position even though a few messages prior to that position had not been processed. This corresponds to “at-most-once” semantics as in the case of a consumer failure messages may not be processed.
  2. It can read the messages, process the messages, and finally save its position. In this case there is a possibility that the consumer process crashes after processing messages but before saving its position. In this case when the new process takes over the first few messages it receives will already have been processed. This corresponds to the “at-least-once” semantics in the case of consumer failure. In many cases messages have a primary key and so the updates are idempotent (receiving the same message twice just overwrites a record with another copy of itself).
  3. So what about exactly once semantics (i.e. the thing you actually want)? The limitation here is not actually a feature of the messaging system but rather the need to co-ordinate the consumer’s position with what is actually stored as output. The classic way of achieving this would be to introduce a two-phase commit between the storage for the consumer position and the storage of the consumers output. But this can be handled more simply and generally by simply letting the consumer store its offset in the same place as its output. This is better because many of the output systems a consumer might want to write to will not support a two-phase commit. As an example of this, our Hadoop ETL that populates data in HDFS stores its offsets in HDFS with the data it reads so that it is guaranteed that either data and offsets are both updated or neither is. We follow similar patterns for many other data systems which require these stronger semantics and for which the messages do not have a primary key to allow for deduplication.

So effectively Kafka guarantees at-least-once delivery by default and allows the user to implement at most once delivery by disabling retries on the producer and committing its offset prior to processing a batch of messages. Exactly-once delivery requires co-operation with the destination storage system but Kafka provides the offset which makes implementing this straight-forward.

replication

Kafka replicates the log for each topic’s partitions across a configurable number of servers (you can set this replication factor on a topic-by-topic basis). This allows automatic failover to these replicas when a server in the cluster fails so messages remain available in the presence of failures.

Other messaging systems provide some replication-related features, but, in our (totally biased) opinion, this appears to be a tacked-on thing, not heavily used, and with large downsides: slaves are inactive, throughput is heavily impacted, it requires fiddly manual configuration, etc. Kafka is meant to be used with replication by default—in fact we implement un-replicated topics as replicated topics where the replication factor is one.

The unit of replication is the topic partition. Under non-failure conditions, each partition in Kafka has a single leader and zero or more followers. The total number of replicas including the leader constitute the replication factor. All reads and writes go to the leader of the partition. Typically, there are many more partitions than brokers and the leaders are evenly distributed among brokers. The logs on the followers are identical to the leader’s log—all have the same offsets and messages in the same order (though, of course, at any given time the leader may have a few as-yet unreplicated messages at the end of its log).

Followers consume messages from the leader just as a normal Kafka consumer would and apply them to their own log. Having the followers pull from the leader has the nice property of allowing the follower to naturally batch together log entries they are applying to their log.

As with most distributed systems automatically handling failures requires having a precise definition of what it means for a node to be “alive”. For Kafka node liveness has two conditions

  1. A node must be able to maintain its session with ZooKeeper (via ZooKeeper’s heartbeat mechanism)
  2. If it is a slave it must replicate the writes happening on the leader and not fall “too far” behind

We refer to nodes satisfying these two conditions as being “in sync” to avoid the vagueness of “alive” or “failed”. The leader keeps track of the set of “in sync” nodes. If a follower dies, gets stuck, or falls behind, the leader will remove it from the list of in sync replicas. The determination of stuck and lagging replicas is controlled by the replica.lag.time.max.ms configuration.

In distributed systems terminology we only attempt to handle a “fail\/recover” model of failures where nodes suddenly cease working and then later recover (perhaps without knowing that they have died). Kafka does not handle so-called “Byzantine” failures in which nodes produce arbitrary or malicious responses (perhaps due to bugs or foul play).

A message is considered “committed” when all in sync replicas for that partition have applied it to their log. Only committed messages are ever given out to the consumer. This means that the consumer need not worry about potentially seeing a message that could be lost if the leader fails. Producers, on the other hand, have the option of either waiting for the message to be committed or not, depending on their preference for tradeoff between latency and durability. This preference is controlled by the acks setting that the producer uses.

The guarantee that Kafka offers is that a committed message will not be lost, as long as there is at least one in sync replica alive, at all times.

Kafka will remain available in the presence of node failures after a short fail-over period, but may not remain available in the presence of network partitions.

design_replicatedlog

At its heart a Kafka partition is a replicated log. The replicated log is one of the most basic primitives in distributed data systems, and there are many approaches for implementing one. A replicated log can be used by other systems as a primitive for implementing other distributed systems in the state-machine style.

A replicated log models the process of coming into consensus on the order of a series of VALUES (NULL, 1, 2, …). There are many ways to implement this, but the simplest and fastest is with a leader who chooses the ordering of values provided to it. As long as the leader remains alive, all followers need to only copy the values and ordering the leader chooses.

Of course if leaders didn’t fail we wouldn’t need followers! When the leader does die we need to choose a new leader from among the followers. But followers themselves may fall behind or crash so we must ensure we choose an up-to-date follower. The fundamental guarantee a log replication algorithm must provide is that if we tell the client a message is committed, and the leader fails, the new leader we elect must also have that message. This yields a tradeoff: if the leader waits for more followers to acknowledge a message before declaring it committed then there will be more potentially electable leaders.

If you choose the number of acknowledgements required and the number of logs that must be compared to elect a leader such that there is guaranteed to be an overlap, then this is called a Quorum.

A common approach to this tradeoff is to use a majority vote for both the commit decision and the leader election. This is not what Kafka does, but let’s explore it anyway to understand the tradeoffs. Let’s say we have 2f+1 replicas. If f+1 replicas must receive a message prior to a commit being declared by the leader, and if we elect a new leader by electing the follower with the most complete log from at least f+1 replicas, then, with no more than f failures, the leader is guaranteed to have all committed messages. This is because among any f+1 replicas, there must be at least one replica that contains all committed messages. That replica’s log will be the most complete and therefore will be selected as the new leader. There are many remaining details that each algorithm must handle (such as precisely defined what makes a log more complete, ensuring log consistency during leader failure or changing the set of servers in the replica set) but we will ignore these for now.

This majority vote approach has a very nice property: the latency is dependent on only the fastest servers. That is, if the replication factor is three, the latency is determined by the faster slave not the slower one.

There are a rich variety of algorithms in this family including ZooKeeper’s Zab, Raft, and Viewstamped Replication. The most similar academic publication we are aware of to Kafka’s actual implementation isPacificA from Microsoft.

The downside of majority vote is that it doesn’t take many failures to leave you with no electable leaders. To tolerate one failure requires three copies of the data, and to tolerate two failures requires five copies of the data. In our experience having only enough redundancy to tolerate a single failure is not enough for a practical system, but doing every write five times, with 5x the disk space requirements and 1\/5th the throughput, is not very practical for large volume data problems. This is likely why quorum algorithms more commonly appear for shared cluster configuration such as ZooKeeper but are less common for primary data storage. For example in HDFS the namenode’s high-availability feature is built on a majority-vote-based journal, but this more expensive approach is not used for the data itself.

Kafka takes a slightly different approach to choosing its quorum set. Instead of majority vote, Kafka dynamically maintains a set of in-sync replicas (ISR) that are caught-up to the leader. Only members of this set are eligible for election as leader. A write to a Kafka partition is not considered committed until all in-sync replicas have received the write. This ISR set is persisted to ZooKeeper whenever it changes. Because of this, any replica in the ISR is eligible to be elected leader. This is an important factor for Kafka’s usage model where there are many partitions and ensuring leadership balance is important. With this ISR model and f+1 replicas, a Kafka topic can tolerate f failures without losing committed messages.

For most use cases we hope to handle, we think this tradeoff is a reasonable one. In practice, to tolerate _f_failures, both the majority vote and the ISR approach will wait for the same number of replicas to acknowledge before committing a message (e.g. to survive one failure a majority quorum needs three replicas and one acknowledgement and the ISR approach requires two replicas and one acknowledgement). The ability to commit without the slowest servers is an advantage of the majority vote approach. However, we think it is ameliorated by allowing the client to choose whether they block on the message commit or not, and the additional throughput and disk space due to the lower required replication factor is worth it.

Another important design distinction is that Kafka does not require that crashed nodes recover with all their data intact. It is not uncommon for replication algorithms in this space to depend on the existence of “stable storage” that cannot be lost in any failure-recovery scenario without potential consistency violations. There are two primary problems with this assumption. First, disk errors are the most common problem we observe in real operation of persistent data systems and they often do not leave data intact. Secondly, even if this were not a problem, we do not want to require the use of fsync on every write for our consistency guarantees as this can reduce performance by two to three orders of magnitude. Our protocol for allowing a replica to rejoin the ISR ensures that before rejoining, it must fully re-sync again even if it lost unflushed data in its crash.

design_uncleanleader

Note that Kafka’s guarantee with respect to data loss is predicated on at least one replica remaining in sync. If all the nodes replicating a partition die, this guarantee no longer holds.

However a practical system needs to do something reasonable when all the replicas die. If you are unlucky enough to have this occur, it is important to consider what will happen. There are two behaviors that could be implemented:

  1. Wait for a replica in the ISR to come back to life and choose this replica as the leader (hopefully it still has all its data).
  2. Choose the first replica (not necessarily in the ISR) that comes back to life as the leader.

This is a simple tradeoff between availability and consistency. If we wait for replicas in the ISR, then we will remain unavailable as long as those replicas are down. If such replicas were destroyed or their data was lost, then we are permanently down. If, on the other hand, a non-in-sync replica comes back to life and we allow it to become leader, then its log becomes the source of truth even though it is not guaranteed to have every committed message. By default Kafka chooses the second strategy and favor choosing a potentially inconsistent replica when all replicas in the ISR are dead. This behavior can be disabled using configuration property unclean.leader.election.enable, to support use cases where downtime is preferable to inconsistency.

This dilemma is not specific to Kafka. It exists in any quorum-based scheme. For example in a majority voting scheme, if a majority of servers suffer a permanent failure, then you must either choose to lose 100% of your data or violate consistency by taking what remains on an existing server as your new source of truth.

design_ha

When writing to Kafka, producers can choose whether they wait for the message to be acknowledged by 0,1 or all (-1) replicas. Note that “acknowledgement by all replicas” does not guarantee that the full set of assigned replicas have received the message. By default, when acks=all, acknowledgement happens as soon as all the current in-sync replicas have received the message. For example, if a topic is configured with only two replicas and one fails (i.e., only one in sync replica remains), then writes that specify acks=all will succeed. However, these writes could be lost if the remaining replica also fails. Although this ensures maximum availability of the partition, this behavior may be undesirable to some users who prefer durability over availability. Therefore, we provide two topic-level configurations that can be used to prefer message durability over availability:

  1. Disable unclean leader election - if all replicas become unavailable, then the partition will remain unavailable until the most recent leader becomes available again. This effectively prefers unavailability over the risk of message loss. See the previous section on Unclean Leader Election for clarification.
  2. Specify a minimum ISR size - the partition will only accept writes if the size of the ISR is above a certain minimum, in order to prevent the loss of messages that were written to just a single replica, which subsequently becomes unavailable. This setting only takes effect if the producer uses acks=all and guarantees that the message will be acknowledged by at least this many in-sync replicas. This setting offers a trade-off between consistency and availability. A higher setting for minimum ISR size guarantees better consistency since the message is guaranteed to be written to more replicas which reduces the probability that it will be lost. However, it reduces availability since the partition will be unavailable for writes if the number of in-sync replicas drops below the minimum threshold.

design_replicamanagment

The above discussion on replicated logs really covers only a single log, i.e. one topic partition. However a Kafka cluster will manage hundreds or thousands of these partitions. We attempt to balance partitions within a cluster in a round-robin fashion to avoid clustering all partitions for high-volume topics on a small number of nodes. Likewise we try to balance leadership so that each node is the leader for a proportional share of its partitions.

It is also important to optimize the leadership election process as that is the critical window of unavailability. A naive implementation of leader election would end up running an election per partition for all partitions a node hosted when that node failed. Instead, we elect one of the brokers as the “controller”. This controller detects failures at the broker level and is responsible for changing the leader of all affected partitions in a failed broker. The result is that we are able to batch together many of the required leadership change notifications which makes the election process far cheaper and faster for a large number of partitions. If the controller fails, one of the surviving brokers will become the new controller.

compaction

Log compaction ensures that Kafka will always retain at least the last known value for each message key within the log of data for a single topic partition. It addresses use cases and scenarios such as restoring state after application crashes or system failure, or reloading caches after application restarts during operational maintenance. Let’s dive into these use cases in more detail and then describe how compaction works.

So far we have described only the simpler approach to data retention where old log data is discarded after a fixed period of time or when the log reaches some predetermined size. This works well for temporal event data such as logging where each record stands alone. However an important class of data streams are the log of changes to keyed, mutable data (for example, the changes to a database table).

Let’s discuss a concrete example of such a stream. Say we have a topic containing user email addresses; every time a user updates their email address we send a message to this topic using their user id as the primary key. Now say we send the following messages over some time period for a user with id 123, each message corresponding to a change in email address (messages for other ids are omitted):

  1. 123 => bill@microsoft.com
  2. .
  3. .
  4. .
  5. 123 => bill@gatesfoundation.org
  6. .
  7. .
  8. .
  9. 123 => bill@gmail.com

Log compaction gives us a more granular retention mechanism so that we are guaranteed to retain at least the last update for each primary key (e.g. bill@gmail.com). By doing this we guarantee that the log contains a full snapshot of the final value for every key not just keys that changed recently. This means downstream consumers can restore their own state off this topic without us having to retain a complete log of all changes.

Let’s start by looking at a few use cases where this is useful, then we’ll see how it can be used.

  1. Database change subscription. It is often necessary to have a data set in multiple data systems, and often one of these systems is a database of some kind (either a RDBMS or perhaps a new-fangled key-value store). For example you might have a database, a cache, a search cluster, and a Hadoop cluster. Each change to the database will need to be reflected in the cache, the search cluster, and eventually in Hadoop. In the case that one is only handling the real-time updates you only need recent log. But if you want to be able to reload the cache or restore a failed search node you may need a complete data set.
  2. Event sourcing. This is a style of application design which co-locates query processing with application design and uses a log of changes as the primary store for the application.
  3. Journaling for high-availability. A process that does local computation can be made fault-tolerant by logging out changes that it makes to it’s local state so another process can reload these changes and carry on if it should fail. A concrete example of this is handling counts, aggregations, and other “group by”-like processing in a stream query system. Samza, a real-time stream-processing framework, uses this feature for exactly this purpose.

In each of these cases one needs primarily to handle the real-time feed of changes, but occasionally, when a machine crashes or data needs to be re-loaded or re-processed, one needs to do a full load. Log compaction allows feeding both of these use cases off the same backing topic. This style of usage of a log is described in more detail in this blog post.

The general idea is quite simple. If we had infinite log retention, and we logged each change in the above cases, then we would have captured the state of the system at each time from when it first began. Using this complete log, we could restore to any point in time by replaying the first N records in the log. This hypothetical complete log is not very practical for systems that update a single record many times as the log will grow without bound even for a stable dataset. The simple log retention mechanism which throws away old updates will bound space but the log is no longer a way to restore the current state—now restoring from the beginning of the log no longer recreates the current state as old updates may not be captured at all.

Log compaction is a mechanism to give finer-grained per-record retention, rather than the coarser-grained time-based retention. The idea is to selectively remove records where we have a more recent update with the same primary key. This way the log is guaranteed to have at least the last state for each key.

This retention policy can be set per-topic, so a single cluster can have some topics where retention is enforced by size or time and other topics where retention is enforced by compaction.

This functionality is inspired by one of LinkedIn’s oldest and most successful pieces of infrastructure—a database changelog caching service called Databus. Unlike most log-structured storage systems Kafka is built for subscription and organizes data for fast linear reads and writes. Unlike Databus, Kafka acts as a source-of-truth store so it is useful even in situations where the upstream data source would not otherwise be replayable.

design_compactionbasics

Here is a high-level picture that shows the logical structure of a Kafka log with the offset for each message.

The head of the log is identical to a traditional Kafka log. It has dense, sequential offsets and retains all messages. Log compaction adds an option for handling the tail of the log. The picture above shows a log with a compacted tail. Note that the messages in the tail of the log retain the original offset assigned when they were first written—that never changes. Note also that all offsets remain valid positions in the log, even if the message with that offset has been compacted away; in this case this position is indistinguishable from the next highest offset that does appear in the log. For example, in the picture above the offsets 36, 37, and 38 are all equivalent positions and a read beginning at any of these offsets would return a message set beginning with 38.

Compaction also allows for deletes. A message with a key and a null payload will be treated as a delete from the log. This delete marker will cause any prior message with that key to be removed (as would any new message with that key), but delete markers are special in that they will themselves be cleaned out of the log after a period of time to free up space. The point in time at which deletes are no longer retained is marked as the “delete retention point” in the above diagram.

The compaction is done in the background by periodically recopying log segments. Cleaning does not block reads and can be throttled to use no more than a configurable amount of I\/O throughput to avoid impacting producers and consumers. The actual process of compacting a log segment looks something like this:

design_compactionguarantees

Log compaction guarantees the following:

  1. Any consumer that stays caught-up to within the head of the log will see every message that is written; these messages will have sequential offsets.
  2. Ordering of messages is always maintained. Compaction will never re-order messages, just remove some.
  3. The offset for a message never changes. It is the permanent identifier for a position in the log.
  4. Any read progressing from offset 0 will see at least the final state of all records in the order they were written. All delete markers for deleted records will be seen provided the reader reaches the head of the log in a time period less than the topic’s delete.retention.ms setting (the default is 24 hours). This is important as delete marker removal happens concurrently with read (and thus it is important that we not remove any delete marker prior to the reader seeing it).
  5. Any consumer progressing from the start of the log will see at least the final state of all records in the order they were written. All delete markers for deleted records will be seen provided the consumer reaches the head of the log in a time period less than the topic’s delete.retention.ms setting (the default is 24 hours). This is important as delete marker removal happens concurrently with read, and thus it is important that we do not remove any delete marker prior to the consumer seeing it.

design_compactiondetails

Log compaction is handled by the log cleaner, a pool of background threads that recopy log segment files, removing records whose key appears in the head of the log. Each compactor thread works as follows:

  1. It chooses the log that has the highest ratio of log head to log tail
  2. It creates a succinct summary of the last offset for each key in the head of the log
  3. It recopies the log from beginning to end removing keys which have a later occurrence in the log. New, clean segments are swapped into the log immediately so the additional disk space required is just one additional log segment (not a fully copy of the log).
  4. The summary of the log head is essentially just a space-compact hash table. It uses exactly 24 bytes per entry. As a result with 8GB of cleaner buffer one cleaner iteration can clean around 366GB of log head (assuming 1k messages).

design_compactionconfig

The log cleaner is disabled by default. To enable it set the server config

  1. log.cleaner.enable=true

This will start the pool of cleaner threads. To enable log cleaning on a particular topic you can add the log-specific property

  1. log.cleanup.policy=compact

This can be done either at topic creation time or using the alter topic command.

Further cleaner configurations are described here.

design_compactionlimitations

  1. You cannot configure yet how much log is retained without compaction (the “head” of the log). Currently all segments are eligible except for the last segment, i.e. the one currently being written to.

design_quotas

Starting in 0.9, the Kafka cluster has the ability to enforce quotas on produce and fetch requests. Quotas are basically byte-rate thresholds defined per client-id. A client-id logically identifies an application making a request. Hence a single client-id can span multiple producer and consumer instances and the quota will apply for all of them as a single entity i.e. if client-id=”test-client” has a produce quota of 10MB\/sec, this is shared across all instances with that same id.

design_quotasnecessary

It is possible for producers and consumers to produce\/consume very high volumes of data and thus monopolize broker resources, cause network saturation and generally DOS other clients and the brokers themselves. Having quotas protects against these issues and is all the more important in large multi-tenant clusters where a small set of badly behaved clients can degrade user experience for the well behaved ones. In fact, when running Kafka as a service this even makes it possible to enforce API limits according to an agreed upon contract.

design_quotasenforcement

By default, each unique client-id receives a fixed quota in bytes\/sec as configured by the cluster (quota.producer.default, quota.consumer.default). This quota is defined on a per-broker basis. Each client can publish\/fetch a maximum of X bytes\/sec per broker before it gets throttled. We decided that defining these quotas per broker is much better than having a fixed cluster wide bandwidth per client because that would require a mechanism to share client quota usage among all the brokers. This can be harder to get right than the quota implementation itself!

How does a broker react when it detects a quota violation? In our solution, the broker does not return an error rather it attempts to slow down a client exceeding its quota. It computes the amount of delay needed to bring a guilty client under it’s quota and delays the response for that time. This approach keeps the quota violation transparent to clients (outside of client-side metrics). This also keeps them from having to implement any special backoff and retry behavior which can get tricky. In fact, bad client behavior (retry without backoff) can exacerbate the very problem quotas are trying to solve.

Client byte rate is measured over multiple small windows (e.g. 30 windows of 1 second each) in order to detect and correct quota violations quickly. Typically, having large measurement windows (for e.g. 10 windows of 30 seconds each) leads to large bursts of traffic followed by long delays which is not great in terms of user experience.

design_quotasoverrides

It is possible to override the default quota for client-ids that need a higher (or even lower) quota. The mechanism is similar to the per-topic log config overrides. Client-id overrides are written to ZooKeeper under\/config\/clients. These overrides are read by all brokers and are effective immediately. This lets us change quotas without having to do a rolling restart of the entire cluster. See here for details.