当前位置: 首页 > 工具软件 > UJMP > 使用案例 >

UJMP 矩阵库的基本用法

谷梁子濯
2023-12-01

例子来自于官方文档,自己做了一点注释和输出

    @Test
    public void testUJMP() {

        //初始化一个4X4的矩阵
        Matrix dense = DenseMatrix.Factory.zeros(4, 4);
        Matrix dense2 = DenseMatrix.Factory.zeros(4, 4);
        //输出矩阵的行和列的长度
        System.out.println("dense rowcount colcount " + dense.getRowCount() + "  " + dense.getColumnCount());;
        //利用行和列进行矩阵的赋值
        for (int i = 0; i < dense.getRowCount(); ++i){
            for (int j = 0 ; j < dense.getColumnCount(); ++j){
                //可以使用setXXX来进行矩阵的赋值,其中第一个参数是值,第二个参数是行,第三个参数是列
                dense.setAsInt((i*j + (int)(Math.pow(i + 1, j))), i, j);
                dense2.setAsInt(i + j, i , j);
            }
        }
        Math.pow(1,2);
        //输出矩阵
        System.out.println(dense);
        System.out.println("dense2 \n" + dense2);

        //初始化一个稀疏矩阵
        Matrix spares = SparseMatrix.Factory.zeros(400,500);
        //这里使用另一种方法获取其行和列
        // long[] getSize()  是一个维度为2的矩阵,第一个是行,第二个数是列
        for (int i = 0; i < spares.getSize()[0]; ++i){
            for (int j = 0; j< spares.getSize()[1]; ++j){
                spares.setAsBigDecimal(BigDecimal.valueOf(i *j), i, j);
            }
        }
        System.out.println(spares.getSize()[0] + "   " + spares.getSize()[1]);
        //System.out.println("spares Matrix : \n" + spares);

        /*****************************************
         *      矩阵的运算
         *****************************************/

        //转置
        Matrix transpose = dense.transpose();
        System.out.println(transpose);
        //两个矩阵求和

        Matrix sum = dense.plus(dense2);
        System.out.println("sum \n" + sum);

        //两个矩阵相减
        Matrix difference = dense.minus(dense2);
        System.out.println("difference \n" + difference);

        //矩阵相乘
        Matrix matrixProduct = dense.mtimes(dense2);
        System.out.println("matrixProduct\n" + matrixProduct);

        //矩阵 k*M (K 为常数, M为矩阵)
        Matrix scaled = dense.times(2.0);
        System.out.println("scaled \n" + scaled);

        //矩阵的逆
        Matrix inverse = dense.inv();
        System.out.println(inverse);

        //伪逆矩阵 广义逆矩阵
        Matrix pesudoInv = dense.pinv();
        System.out.println(pesudoInv);

        //求矩阵的行列式
        double determiant = dense.det();
        System.out.println("determiant = " + determiant);

        //矩阵的奇异值分解
        Matrix[] sigularValueDecompostion = dense.svd();
        for (int i = 0; i < sigularValueDecompostion.length; ++i){
            System.out.println("sigularValueDecompostion " + i + "= \n" + sigularValueDecompostion[i]);
        }

        //求矩阵的特征值
        Matrix[] eigenValueDecompostion = dense.eig();
        for (int i = 0; i < eigenValueDecompostion.length; ++i){
            System.out.println("eigenValueDecompostion " + i + "= \n" + eigenValueDecompostion[i]);
        }

        //矩阵的LU分解,将矩阵分解成一个上三角矩阵和下三角矩阵的乘积
        Matrix[] luValueDecompostion = dense.lu();
        for (int i = 0; i < luValueDecompostion.length; ++i){
            System.out.println("luValueDecompostion " + i + "= \n" + luValueDecompostion[i]);
        }

        //qr分解  半正交矩阵与一个上三角矩阵的积,常用来求解线性最小二乘问题
        Matrix[] qrDecomposition = dense.qr();
        for (int i = 0; i < qrDecomposition.length; ++i){
            System.out.println("qrDecomposition " + i + "= \n" + qrDecomposition[i]);
        }


        //Cholesky分解 对于每一个正定矩阵 Cholesky分解都存在
        Matrix choleskyDecomposition = dense.chol();
        System.out.println("choleskyDecomposition \n" + choleskyDecomposition);

    }
 类似资料: