long m = 5;
long n = 5;
/**
* 制造一个空矩阵
*/
Matrix emptyMatrix = MatrixFactory.emptyMatrix();
/**
* 制造一个m*n随机矩阵
*/
Matrix randMatrix = Matrix.factory.rand(m, n);
/**
* 制造一个m*n零矩阵
*/
Matrix zeroMatrix = Matrix.factory.zeros(m, n);
/**
* 制造一个m*n对角线为1其余元素为0的矩阵
*/
Matrix eyeMatrix = Matrix.factory.eye(m, n);
/**
* 制造一个m*n全部元素为1的矩阵
*/
Matrix oneMatrix = Matrix.factory.ones(m, n);
/**
* 矩阵的相关操作
*/
// 矩阵与数值的相关运算,意思大家根据英语的含义就能看出,这里就不解释了
Matrix res_1 = oneMatrix.times(10);
Matrix res_2 = oneMatrix.divide(10);
Matrix res_3 = oneMatrix.plus(10);
Matrix res_4 = oneMatrix.minus(10);
/**
* 矩阵与矩阵的相关运算 加和减函数都不用变,乘的话要加上m表示matrix间计算
*/
Matrix res_5 = oneMatrix.mtimes(randMatrix);
Matrix res_7 = oneMatrix.plus(randMatrix);
Matrix res_8 = oneMatrix.minus(randMatrix);
/**
* 求转置求逆,这里有三种返回型,分别是link orig new 计算时间new > orig > link 无返回型和orig的时间类似
*/
Matrix res_9 = oneMatrix.transpose(Ret.LINK);
Matrix res_10 = oneMatrix.transpose(Ret.ORIG);
Matrix res_11 = oneMatrix.transpose(Ret.NEW);
Matrix res_12 = oneMatrix.inv();
// 选取子矩阵
Matrix res_13 = oneMatrix.subMatrix(Ret.NEW, startRow, startColumn,
endRow, endColumn);
// 选取行
Matrix res_14 = oneMatrix.selectRows(returnType, rows);
// 选取列
Matrix res_15 = oneMatrix.selectColumns(returnType, columns);
// 按第i列进行排序,reverse表示返回的排序矩阵是按正序还是逆序
Matrix res_16 = oneMatrix.sortrows(returnType, column, reverse);
// 将矩阵的所有数值相加得到的返回值
Matrix res_17 = oneMatrix.getValueSum();
// 选去矩阵的行和列
Matrix res_18 = oneMatrix.getColumnCount();
Matrix res_19 = oneMatrix.getRowCount();
//判断矩阵否和一个矩阵或一个值相等,相等的话在相应的位置设置为为true否则为false,
//如果要看相等的个数的总和则可再继续用一个getvaluecount函数即可
Matrix res_20 = oneMatrix.eq(returnType, matrix);
matrix res_21 = oneMatrix.eq(returnType, value)
当矩阵返回类型为RET.ORIG的时候不能使用任何有可能改变矩阵大小的操作(除非自己知道确实不会改变),例如转置、选取行列、子矩阵等~~~~~
packageMatrixPFTest.yi.maytwenty;importorg.ujmp.core.Matrix;importorg.ujmp.core.MatrixFactory;importorg.ujmp.core.calculation.Calculation.Ret;public classPerfomaceTest {public static voidmain(String[] args) {longbegin, end;/*** test变test2才变 *********test2不能被改变*/
long m = 725, n = 20;//Matrix test_1 = Matrix.factory.rand(5, 5);//test_1.showGUI();//Matrix test_2 = test_1.transpose(Ret.ORIG);//test_2.showGUI();//Matrix test_3 = test_2.mtimes(Matrix.factory.ones(5, 5).times(2));//test_3.showGUI();
begin =System.currentTimeMillis();
Matrix res=Matrix.factory.rand(m, n);
Matrix res0=Matrix.factory.rand(m, n);
end=System.currentTimeMillis();
Constans.sop("构建矩阵耗时" + (end - begin) + "ms");//res.setLabel("res");//res.showGUI();
begin=System.currentTimeMillis();
Matrix res_1_trannull=res.transpose();
end=System.currentTimeMillis();
Constans.sop("res_1_trannull-耗时" + (end - begin) + "ms");
begin=System.currentTimeMillis();
Matrix res_2_tranlink=res.transpose(Ret.LINK);
end=System.currentTimeMillis();
Constans.sop("res_2_tranlink-耗时" + (end - begin) + "ms");//res_2_tranlink.setLabel("res_2_tranlink");//res_2_tranlink.setAsDouble(10, 0, 0);//res_2_tranlink.showGUI();
/*** 进行矩阵赋值,两个矩阵式同一个矩阵,除非用copy()*/Matrix xxxMatrix=res_2_tranlink;
xxxMatrix.setAsDouble(10, 0, 0);
xxxMatrix.showGUI();/*** 对LINK的矩阵进行赋值*/res_2_tranlink= MatrixFactory.ones(1, 1);
res_2_tranlink.setAsDouble(110, 0, 0);
res_2_tranlink.showGUI();/*** 选取特定行与列*/begin=System.currentTimeMillis();
Matrix res_3= res_2_tranlink.selectColumns(Ret.NEW, 10);
end=System.currentTimeMillis();
res_3.showGUI();
Constans.sop("选取列-NEW-耗时" + (end - begin) + "ms");
begin=System.currentTimeMillis();
Matrix res_4= res_2_tranlink.selectColumns(Ret.LINK, 0);
end=System.currentTimeMillis();
res_4.setAsDouble(10, 0, 0);
res_4.showGUI();
Constans.sop("选取列-link-耗时" + (end - begin) + "ms");/*** 求逆耗时较长,但是inv和invSymm相差无几*/
for (int i = 0; i < 1; ++i) {
begin=System.currentTimeMillis();
Matrix res_5=res_2_tranlink.inv();
end=System.currentTimeMillis();
Constans.sop("inv-耗时" + (end - begin) + "ms");
}/*** 获取行数,列数*/begin=System.currentTimeMillis();long res_rowcount =res_2_tranlink.getRowCount();
end=System.currentTimeMillis();
Constans.sop("getRowCount-耗时" + (end - begin) + "ms");/*** 矩阵相乘的检测*/begin=System.currentTimeMillis();
Matrix res_muti_link= res_2_tranlink.mtimes(Ret.LINK, false, res0);
end=System.currentTimeMillis();
res_muti_link.setAsDouble(100, 0, 0);//res_muti_link.showGUI();
Constans.sop("res_muti_link-耗时" + (end - begin) + "ms");//这里是LINK后和LINK后的矩阵相乘,但是返回的是NEW,所以可以改变值
Matrix afterlinklink =res_muti_link.mtimes(res_2_tranlink);
afterlinklink.setAsDouble(100, 0, 0);
afterlinklink.showGUI();
begin=System.currentTimeMillis();
Matrix res_muti_new= res_2_tranlink.mtimes(Ret.NEW, false, res0);
end=System.currentTimeMillis();
res_muti_new.showGUI();
Constans.sop("res_muti_new-耗时" + (end - begin) + "ms");/*** 对不是LINK的矩阵选取行或列再改变变量值,使用LINK的话都会受到影响*/Matrix beforeMatrix= Matrix.factory.rand(5, 5);
beforeMatrix.setLabel("beforeMatrix");
beforeMatrix.showGUI();
Matrix nowMatrix= beforeMatrix.selectRows(Ret.NEW, 0);
nowMatrix.setAsDouble(10, 0, 0);
nowMatrix.setLabel("nowMatrix");
nowMatrix.showGUI();
Matrix laterMatrix=beforeMatrix.transpose(Ret.LINK);
laterMatrix.setLabel("laterMatrix");//laterMatrix.showGUI();
Matrix xx = laterMatrix.minus(Ret.LINK, false, 10);double xxd = xx.getAsDouble(0, 0);
Constans.sop(xxd);//xx.showGUI();
}
}