当前位置: 首页 > 工具软件 > FishEye > 使用案例 >

鱼眼相机的标定fisheye_calibrate

楚瑞
2023-12-01

直接上代码:https://github.com/LixinLu42/fisheye_calibrate       欢迎骚扰我的github哈~~~

使用方法,需要使用鱼眼相机拍摄棋盘格的一组照片,尽量每个角度都要拍,拍个三四十张,保存在本地,使用本程序读取并且标定,会输出一个txt文件,相机畸变参数和内参可以去这里找。

//运行环境 VS2012+opencv3.0已测试  VS2015+opencv3.2已测试
#include <opencv2/opencv.hpp>
#include <fstream>
using namespace std;
using namespace cv;

int main()
{
    ofstream fout("caliberation_result.txt");  /**    保存定标结果的文件     **/

    /************************************************************************
    读取每一幅图像,从中提取出角点,然后对角点进行亚像素精确化
    *************************************************************************/
    cout << "开始提取角点………………" << endl;
    int image_count = 43;                    /****    图像数量     ****/
    Size board_size = Size(7, 6);            /****    定标板上每行、列的角点数       ****/
    vector<Point2f> corners;                  /****    缓存每幅图像上检测到的角点       ****/
    vector<vector<Point2f> >  corners_Seq;    /****  保存检测到的所有角点       ****/
    vector<Mat>  image_Seq;
    int successImageNum = 0;                /****   成功提取角点的棋盘图数量    ****/

    int count = 0;
    for (int i = 0; i != image_count; i++)
    {
        cout << "Frame #" << i + 1 << "..." << endl;
        string imageFileName;
        std::stringstream StrStm;
        StrStm << i + 1;
        StrStm >> imageFileName;
        imageFileName += ".jpg";

        cout<< imageFileName << endl;
        cv::Mat image = imread("../../img_src/" + imageFileName);
        /* 提取角点 */
        Mat imageGray;
        cvtColor(image, imageGray, CV_RGB2GRAY);
        bool patternfound = findChessboardCorners(image, board_size, corners, CALIB_CB_ADAPTIVE_THRESH + CALIB_CB_NORMALIZE_IMAGE +
            CALIB_CB_FAST_CHECK);
        if (!patternfound)
        {
            imshow("i",image);
            waitKey(30);
            cout << "找不到角点,需删除图片文件" << imageFileName << "重新排列文件名,再次标定" << endl;
            getchar();
            continue;
            //exit(1);
        }
        else
        {
            /* 亚像素精确化 */
            cornerSubPix(imageGray, corners, Size(11, 11), Size(-1, -1), TermCriteria(CV_TERMCRIT_EPS + CV_TERMCRIT_ITER, 30, 0.1));
            /* 绘制检测到的角点并保存 */
            Mat imageTemp = image.clone();
            for (int j = 0; j < corners.size(); j++)
            {
                circle(imageTemp, corners[j], 10, Scalar(0, 0, 255), 2, 8, 0);
            }
            string imageFileName;
            std::stringstream StrStm;
            StrStm << i + 1;
            StrStm >> imageFileName;
            imageFileName += "_corner.jpg";
            imwrite(imageFileName, imageTemp);
            cout << "Frame corner#" << i + 1 << "...end" << endl;

            count = count + corners.size();
            successImageNum = successImageNum + 1;
            corners_Seq.push_back(corners);
        }
        image_Seq.push_back(image);
    }
    cout << "角点提取完成!\n";
    /************************************************************************
    摄像机定标
    *************************************************************************/
    cout << "开始定标………………" << endl;
    Size square_size = Size(20, 20);
    vector<vector<Point3f> >  object_Points;        /****  保存定标板上角点的三维坐标   ****/

    Mat image_points = Mat(1, count, CV_32FC2, Scalar::all(0));  /*****   保存提取的所有角点   *****/
    vector<int>  point_counts;
    /* 初始化定标板上角点的三维坐标 */
    for (int t = 0; t<successImageNum; t++)
    {
        vector<Point3f> tempPointSet;
        for (int i = 0; i<board_size.height; i++)
        {
            for (int j = 0; j<board_size.width; j++)
            {
                /* 假设定标板放在世界坐标系中z=0的平面上 */
                Point3f tempPoint;
                tempPoint.x = i*square_size.width;
                tempPoint.y = j*square_size.height;
                tempPoint.z = 0;
                tempPointSet.push_back(tempPoint);
            }
        }
        object_Points.push_back(tempPointSet);
    }
    for (int i = 0; i< successImageNum; i++)
    {
        point_counts.push_back(board_size.width*board_size.height);
    }
    /* 开始定标 */
    Size image_size = image_Seq[0].size();
    cv::Matx33d intrinsic_matrix;    /*****    摄像机内参数矩阵    ****/
    cv::Vec4d distortion_coeffs;     /* 摄像机的4个畸变系数:k1,k2,k3,k4*/
    std::vector<cv::Vec3d> rotation_vectors;                           /* 每幅图像的旋转向量 */
    std::vector<cv::Vec3d> translation_vectors;                        /* 每幅图像的平移向量 */
    int flags = 0;
    flags |= cv::fisheye::CALIB_RECOMPUTE_EXTRINSIC;
    flags |= cv::fisheye::CALIB_CHECK_COND;
    flags |= cv::fisheye::CALIB_FIX_SKEW;
    fisheye::calibrate(object_Points, corners_Seq, image_size, intrinsic_matrix, distortion_coeffs, rotation_vectors, translation_vectors, flags, cv::TermCriteria(3, 20, 1e-6));
    cout << "定标完成!\n";

    /************************************************************************
    对定标结果进行评价
    *************************************************************************/
    cout << "开始评价定标结果………………" << endl;
    double total_err = 0.0;                   /* 所有图像的平均误差的总和 */
    double err = 0.0;                        /* 每幅图像的平均误差 */
    vector<Point2f>  image_points2;             /****   保存重新计算得到的投影点    ****/

    cout << "每幅图像的定标误差:" << endl;
    cout << "每幅图像的定标误差:" << endl << endl;
    for (int i = 0; i<image_count; i++)
    {
        vector<Point3f> tempPointSet = object_Points[i];
        /****    通过得到的摄像机内外参数,对空间的三维点进行重新投影计算,得到新的投影点     ****/
        fisheye::projectPoints(tempPointSet, image_points2, rotation_vectors[i], translation_vectors[i], intrinsic_matrix, distortion_coeffs);
        /* 计算新的投影点和旧的投影点之间的误差*/
        vector<Point2f> tempImagePoint = corners_Seq[i];
        Mat tempImagePointMat = Mat(1, tempImagePoint.size(), CV_32FC2);
        Mat image_points2Mat = Mat(1, image_points2.size(), CV_32FC2);
        for (size_t i = 0; i != tempImagePoint.size(); i++)
        {
            image_points2Mat.at<Vec2f>(0, i) = Vec2f(image_points2[i].x, image_points2[i].y);
            tempImagePointMat.at<Vec2f>(0, i) = Vec2f(tempImagePoint[i].x, tempImagePoint[i].y);
        }
        err = norm(image_points2Mat, tempImagePointMat, NORM_L2);
        total_err += err /= point_counts[i];
        cout << "第" << i + 1 << "幅图像的平均误差:" << err << "像素" << endl;
        fout << "第" << i + 1 << "幅图像的平均误差:" << err << "像素" << endl;
    }
    cout << "总体平均误差:" << total_err / image_count << "像素" << endl;
    fout << "总体平均误差:" << total_err / image_count << "像素" << endl << endl;
    cout << "评价完成!" << endl;

    /************************************************************************
    保存定标结果
    *************************************************************************/
    cout << "开始保存定标结果………………" << endl;
    Mat rotation_matrix = Mat(3, 3, CV_32FC1, Scalar::all(0)); /* 保存每幅图像的旋转矩阵 */

    fout << "相机内参数矩阵:" << endl;
    fout << intrinsic_matrix << endl;
    fout << "畸变系数:\n";
    fout << distortion_coeffs << endl;
    for (int i = 0; i<image_count; i++)
    {
        fout << "第" << i + 1 << "幅图像的旋转向量:" << endl;
        fout << rotation_vectors[i] << endl;

        /* 将旋转向量转换为相对应的旋转矩阵 */
        Rodrigues(rotation_vectors[i], rotation_matrix);
        fout << "第" << i + 1 << "幅图像的旋转矩阵:" << endl;
        fout << rotation_matrix << endl;
        fout << "第" << i + 1 << "幅图像的平移向量:" << endl;
        fout << translation_vectors[i] << endl;
    }
    cout << "完成保存" << endl;
    fout << endl;


    /************************************************************************
    显示定标结果
    *************************************************************************/
    Mat mapx = Mat(Size(1920, 1080), CV_32FC1);
    Mat mapy = Mat(Size(1920, 1080), CV_32FC1);
    Mat R = Mat::eye(3, 3, CV_32F);

    cout << "保存矫正图像" << endl;
    for (int i = 0; i != image_count; i++)
    {
        cout << "Frame #" << i + 1 << "..." << endl;
        fisheye::initUndistortRectifyMap(intrinsic_matrix,distortion_coeffs,R,intrinsic_matrix,image_size,CV_32FC1,mapx,mapy);
        //fisheye::initUndistortRectifyMap(intrinsic_matrix, distortion_coeffs, R,
            //getOptimalNewCameraMatrix(intrinsic_matrix, distortion_coeffs, image_size, 1, image_size, 0), Size(3200, 1800), CV_32FC1, mapx, mapy);
        Mat t = image_Seq[i].clone();
        cv::remap(image_Seq[i], t, mapx, mapy, INTER_LINEAR);
        string imageFileName;
        std::stringstream StrStm;
        StrStm << i + 1;
        StrStm >> imageFileName;
        imageFileName += "_d.jpg";
        imwrite(imageFileName, t);
    }
    cout << "保存结束" << endl;


    /************************************************************************
    测试一张图片
    *************************************************************************/
    if (1)
    {
        //cout<<"TestImage ..."<<endl;
        //Mat testImage = imread("a.jpg",1);
        //fisheye::initUndistortRectifyMap(intrinsic_matrix,distortion_coeffs,R,
        //    getOptimalNewCameraMatrix(intrinsic_matrix, distortion_coeffs, image_size, 1, image_size, 0),image_size,CV_32FC1,mapx,mapy);
        //Mat t = testImage.clone();
        //cv::remap(testImage,t,mapx, mapy, INTER_LINEAR);

        //imwrite("TestOutput.jpg",t);
        //cout<<"保存结束"<<endl;

        cout << "TestImage ..." << endl;
        Mat distort_img = imread("a.jpg", 1);
        Mat undistort_img;
        Mat intrinsic_mat(intrinsic_matrix), new_intrinsic_mat;

        intrinsic_mat.copyTo(new_intrinsic_mat);
        //调节视场大小,乘的系数越小视场越大
        new_intrinsic_mat.at<double>(0, 0) *= 0.7;
        new_intrinsic_mat.at<double>(1, 1) *= 0.7;
        //调节校正图中心,建议置于校正图中心
        new_intrinsic_mat.at<double>(0, 2) = 0.5 * distort_img.cols;
        new_intrinsic_mat.at<double>(1, 2) = 0.5 * distort_img.rows;

        fisheye::undistortImage(distort_img, undistort_img, intrinsic_matrix, distortion_coeffs, new_intrinsic_mat);
        imwrite("output.jpg", undistort_img);
        cout << "保存结束" << endl;
    }


    return 0;
}

 

 类似资料: