ictclas4j中文分词模块ms也是采用了Viterbi算法进行切词,在切词基础上进行词性标注。具体可参阅其代码:
package org.ictclas4j.segment;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.ArrayList;
import org.ictclas4j.bean.Atom;
import org.ictclas4j.bean.Dictionary;
import org.ictclas4j.bean.MidResult;
import org.ictclas4j.bean.SegNode;
import org.ictclas4j.bean.SegResult;
import org.ictclas4j.bean.Sentence;
import org.ictclas4j.utility.POSTag;
import org.ictclas4j.utility.Utility;
public class SegTag {
private Dictionary coreDict;
private Dictionary bigramDict;
private PosTagger personTagger;
private PosTagger transPersonTagger;
private PosTagger placeTagger;
private PosTagger lexTagger;
private int segPathCount = 1;// 分词路径的数目
public SegTag(int segPathCount) {
this.segPathCount = segPathCount;
coreDict = new Dictionary("data\\coreDict.dct");
bigramDict = new Dictionary("data\\bigramDict.dct");
personTagger = new PosTagger(Utility.TAG_TYPE.TT_PERSON, "data\\nr",
coreDict);
transPersonTagger = new PosTagger(Utility.TAG_TYPE.TT_TRANS_PERSON,
"data\\tr", coreDict);
placeTagger = new PosTagger(Utility.TAG_TYPE.TT_TRANS_PERSON,
"data\\ns", coreDict);
lexTagger = new PosTagger(Utility.TAG_TYPE.TT_NORMAL, "data\\lexical",
coreDict);
}
public SegResult split(String src) {
SegResult sr = new SegResult(src);// 分词结果
String finalResult = null;
if (src != null) {
finalResult = "";
int index = 0;
String midResult = null;
sr.setRawContent(src);
SentenceSeg ss = new SentenceSeg(src);
ArrayList<Sentence> sens = ss.getSens();
for (Sentence sen : sens) {
long start = System.currentTimeMillis();
MidResult mr = new MidResult();
mr.setIndex(index++);
mr.setSource(sen.getContent());
if (sen.isSeg()) {
// 原子分词
AtomSeg as = new AtomSeg(sen.getContent());
ArrayList<Atom> atoms = as.getAtoms();
mr.setAtoms(atoms);
println2Err("[atom time]:"
+ (System.currentTimeMillis() - start));
start = System.currentTimeMillis();
// 生成分词图表,先进行初步分词,然后进行优化,最后进行词性标记
SegGraph segGraph = GraphGenerate.generate(atoms, coreDict);
mr.setSegGraph(segGraph.getSnList());
// 生成二叉分词图表
SegGraph biSegGraph = GraphGenerate.biGenerate(segGraph,
coreDict, bigramDict);
mr.setBiSegGraph(biSegGraph.getSnList());
println2Err("[graph time]:"
+ (System.currentTimeMillis() - start));
start = System.currentTimeMillis();
// 求N最短路径
NShortPath nsp = new NShortPath(biSegGraph, segPathCount);
ArrayList<ArrayList<Integer>> bipath = nsp.getPaths();
mr.setBipath(bipath);
println2Err("[NSP time]:"
+ (System.currentTimeMillis() - start));
start = System.currentTimeMillis();
for (ArrayList<Integer> onePath : bipath) {
// 得到初次分词路径
ArrayList<SegNode> segPath = getSegPath(segGraph,
onePath);
ArrayList<SegNode> firstPath = AdjustSeg
.firstAdjust(segPath);
String firstResult = outputResult(firstPath);
mr.addFirstResult(firstResult);
println2Err("[first time]:"
+ (System.currentTimeMillis() - start));
start = System.currentTimeMillis();
// 处理未登陆词,进对初次分词结果进行优化
SegGraph optSegGraph = new SegGraph(firstPath);
ArrayList<SegNode> sns = clone(firstPath);
personTagger.recognition(optSegGraph, sns);
transPersonTagger.recognition(optSegGraph, sns);
placeTagger.recognition(optSegGraph, sns);
mr.setOptSegGraph(optSegGraph.getSnList());
println2Err("[unknown time]:"
+ (System.currentTimeMillis() - start));
start = System.currentTimeMillis();
// 根据优化后的结果,重新进行生成二叉分词图表
SegGraph optBiSegGraph = GraphGenerate.biGenerate(
optSegGraph, coreDict, bigramDict);
mr.setOptBiSegGraph(optBiSegGraph.getSnList());
// 重新求取N-最短路径
NShortPath optNsp = new NShortPath(optBiSegGraph,
segPathCount);
ArrayList<ArrayList<Integer>> optBipath = optNsp
.getPaths();
mr.setOptBipath(optBipath);
// 生成优化后的分词结果,并对结果进行词性标记和最后的优化调整处理
ArrayList<SegNode> adjResult = null;
for (ArrayList<Integer> optOnePath : optBipath) {
ArrayList<SegNode> optSegPath = getSegPath(
optSegGraph, optOnePath);
lexTagger.recognition(optSegPath);
String optResult = outputResult(optSegPath);
mr.addOptResult(optResult);
adjResult = AdjustSeg.finaAdjust(optSegPath,
personTagger, placeTagger);
String adjrs = outputResult(adjResult);
println2Err("[last time]:"
+ (System.currentTimeMillis() - start));
start = System.currentTimeMillis();
if (midResult == null)
midResult = adjrs;
break;
}
}
sr.addMidResult(mr);
} else
midResult = sen.getContent();
finalResult += midResult;
midResult = null;
}
sr.setFinalResult(finalResult);
}
return sr;
}
private ArrayList<SegNode> clone(ArrayList<SegNode> sns) {
ArrayList<SegNode> result = null;
if (sns != null && sns.size() > 0) {
result = new ArrayList<SegNode>();
for (SegNode sn : sns)
result.add(sn.clone());
}
return result;
}
// 根据二叉分词路径生成分词路径
private ArrayList<SegNode> getSegPath(SegGraph sg, ArrayList<Integer> bipath) {
ArrayList<SegNode> path = null;
if (sg != null && bipath != null) {
ArrayList<SegNode> sns = sg.getSnList();
path = new ArrayList<SegNode>();
for (int index : bipath)
path.add(sns.get(index));
}
return path;
}
// 根据分词路径生成分词结果
private String outputResult(ArrayList<SegNode> wrList) {
String result = null;
String temp = null;
char[] pos = new char[2];
if (wrList != null && wrList.size() > 0) {
result = "";
for (int i = 0; i < wrList.size(); i++) {
SegNode sn = wrList.get(i);
if (sn.getPos() != POSTag.SEN_BEGIN
&& sn.getPos() != POSTag.SEN_END) {
int tag = Math.abs(sn.getPos());
pos[0] = (char) (tag / 256);
pos[1] = (char) (tag % 256);
temp = "" + pos[0];
if (pos[1] > 0)
temp += "" + pos[1];
result += sn.getSrcWord() + "/" + temp + " ";
}
}
}
return result;
}
public void setSegPathCount(int segPathCount) {
this.segPathCount = segPathCount;
}
public static void main(String[] args) {
SegTag segTag = new SegTag(1);
BufferedReader reader = new BufferedReader(new InputStreamReader(
System.in));
String line = null;
try {
while ((line = reader.readLine()) != null) {
try {
SegResult seg_res = segTag.split(line);
System.out.println(seg_res.getFinalResult());
} catch (Throwable t) {
t.printStackTrace();
}
}
} catch (IOException e) {
e.printStackTrace();
}
}
private static void println2Err(String str) {
// System.err.println(str);
}
}