本文整理汇总了Python中scipy.stats.uniform方法的典型用法代码示例。如果您正苦于以下问题:Python stats.uniform方法的具体用法?Python stats.uniform怎么用?Python stats.uniform使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在模块scipy.stats的用法示例。
在下文中一共展示了stats.uniform方法的29个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: likelihood
点赞 6
# 需要导入模块: from scipy import stats [as 别名]
# 或者: from scipy.stats import uniform [as 别名]
def likelihood(parameter_vector):
parameter_vector = 10**np.array(parameter_vector)
#Solve ODE system given parameter vector
yout = odeint(odefunc, y0, tspan, args=(parameter_vector,))
cout = yout[:, 2]
#Calculate log probability contribution given simulated experimental values.
logp_ctotal = np.sum(like_ctot.logpdf(cout))
#If simulation failed due to integrator errors, return a log probability of -inf.
if np.isnan(logp_ctotal):
logp_ctotal = -np.inf
return logp_ctotal
# Add vector of rate parameters to be sampled as unobserved random variables in DREAM with uniform priors.
示例2: test_param_sampler
点赞 6
# 需要导入模块: from scipy import stats [as 别名]
# 或者: from scipy.stats import uniform [as 别名]
def test_param_sampler():
# test basic properties of param sampler
param_distributions = {"kernel": ["rbf", "linear"],
"C": uniform(0, 1)}
sampler = ParameterSampler(param_distributions=param_distributions,
n_iter=10, random_state=0)
samples = [x for x in sampler]
assert_equal(len(samples), 10)
for sample in samples:
assert sample["kernel"] in ["rbf", "linear"]
assert 0 <= sample["C"] <= 1
# test that repeated calls yield identical parameters
param_distributions = {"C": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]}
sampler = ParameterSampler(param_distributions=param_distributions,
n_iter=3, random_state=0)
assert_equal([x for x in sampler], [x for x in sampler])
if sp_version >= (0, 16):
param_distributions = {"C": uniform(0, 1)}
sampler = ParameterSampler(param_distributions=param_distributions,
n_iter=10, random_state=0)
assert_equal([x for x in sampler], [x for x in sampler])
开发者ID:PacktPublishing,项目名称:Mastering-Elasticsearch-7.0,代码行数:25,
示例3: setUp_configure
点赞 6
# 需要导入模块: from scipy import stats [as 别名]
# 或者: from scipy.stats import uniform [as 别名]
def setUp_configure(self):
from scipy import stats
self.dist = distributions.Uniform
self.scipy_dist = stats.uniform
self.test_targets = set([
'batch_shape', 'cdf', 'entropy', 'event_shape', 'icdf', 'log_prob',
'mean', 'sample', 'stddev', 'support', 'variance'])
if self.use_loc_scale:
loc = numpy.random.uniform(
-10, 0, self.shape).astype(numpy.float32)
scale = numpy.random.uniform(
0, 10, self.shape).astype(numpy.float32)
self.params = {'loc': loc, 'scale': scale}
self.scipy_params = {'loc': loc, 'scale': scale}
else:
low = numpy.random.uniform(
-10, 0, self.shape).astype(numpy.float32)
high = numpy.random.uniform(
low, low + 10, self.shape).astype(numpy.float32)
self.params = {'low': low, 'high': high}
self.scipy_params = {'loc': low, 'scale': high-low}
self.support = '[low, high]'
开发者ID:chainer,项目名称:chainer,代码行数:27,
示例4: _construct_generator_obj
点赞 6
# 需要导入模块: from scipy import stats [as 别名]
# 或者: from scipy.stats import uniform [as 别名]
def _construct_generator_obj(self, C_tv_range, C_group_l1_range,
logspace=True):
generators = []
if len(C_tv_range) == 2:
if logspace:
generators.append(Log10UniformGenerator(*C_tv_range))
else:
generators.append(uniform(C_tv_range))
else:
generators.append(null_generator)
if len(C_group_l1_range) == 2:
if logspace:
generators.append(Log10UniformGenerator(*C_group_l1_range))
else:
generators.append(uniform(C_group_l1_range))
else:
generators.append(null_generator)
return generators
# Properties #
开发者ID:X-DataInitiative,项目名称:tick,代码行数:24,
示例5: test_frozen_dirichlet
点赞 6
# 需要导入模块: from scipy import stats [as 别名]
# 或者: from scipy.stats import uniform [as 别名]
def test_frozen_dirichlet(self):
np.random.seed(2846)
n = np.random.randint(1, 32)
alpha = np.random.uniform(10e-10, 100, n)
d = dirichlet(alpha)
assert_equal(d.var(), dirichlet.var(alpha))
assert_equal(d.mean(), dirichlet.mean(alpha))
assert_equal(d.entropy(), dirichlet.entropy(alpha))
num_tests = 10
for i in range(num_tests):
x = np.random.uniform(10e-10, 100, n)
x /= np.sum(x)
assert_equal(d.pdf(x[:-1]), dirichlet.pdf(x[:-1], alpha))
assert_equal(d.logpdf(x[:-1]), dirichlet.logpdf(x[:-1], alpha))
开发者ID:Relph1119,项目名称:GraphicDesignPatternByPython,代码行数:19,
示例6: test_pairwise_distances
点赞 6
# 需要导入模块: from scipy import stats [as 别名]
# 或者: from scipy.stats import uniform [as 别名]
def test_pairwise_distances(self):
# Test that the distribution of pairwise distances is close to correct.
np.random.seed(514)
def random_ortho(dim):
u, _s, v = np.linalg.svd(np.random.normal(size=(dim, dim)))
return np.dot(u, v)
for dim in range(2, 6):
def generate_test_statistics(rvs, N=1000, eps=1e-10):
stats = np.array([
np.sum((rvs(dim=dim) - rvs(dim=dim))**2)
for _ in range(N)
])
# Add a bit of noise to account for numeric accuracy.
stats += np.random.uniform(-eps, eps, size=stats.shape)
return stats
expected = generate_test_statistics(random_ortho)
actual = generate_test_statistics(scipy.stats.ortho_group.rvs)
_D, p = scipy.stats.ks_2samp(expected, actual)
assert_array_less(.05, p)
开发者ID:Relph1119,项目名称:GraphicDesignPatternByPython,代码行数:26,
示例7: test_haar
点赞 6
# 需要导入模块: from scipy import stats [as 别名]
# 或者: from scipy.stats import uniform [as 别名]
def test_haar(self):
# Test that the eigenvalues, which lie on the unit circle in
# the complex plane, are uncorrelated.
# Generate samples
dim = 5
samples = 1000 # Not too many, or the test takes too long
np.random.seed(514) # Note that the test is sensitive to seed too
xs = unitary_group.rvs(dim, size=samples)
# The angles "x" of the eigenvalues should be uniformly distributed
# Overall this seems to be a necessary but weak test of the distribution.
eigs = np.vstack(scipy.linalg.eigvals(x) for x in xs)
x = np.arctan2(eigs.imag, eigs.real)
res = kstest(x.ravel(), uniform(-np.pi, 2*np.pi).cdf)
assert_(res.pvalue > 0.05)
开发者ID:Relph1119,项目名称:GraphicDesignPatternByPython,代码行数:18,
示例8: test_randomizedsearchcv_best_estimator
点赞 6
# 需要导入模块: from scipy import stats [as 别名]
# 或者: from scipy.stats import uniform [as 别名]
def test_randomizedsearchcv_best_estimator(u1_ml100k):
"""Ensure that the best estimator is the one that gives the best score (by
re-running it)"""
param_distributions = {'n_epochs': [5], 'lr_all': uniform(0.002, 0.003),
'reg_all': uniform(0.04, 0.02), 'n_factors': [1],
'init_std_dev': [0]}
rs = RandomizedSearchCV(SVD, param_distributions, measures=['mae'],
cv=PredefinedKFold(), joblib_verbose=100)
rs.fit(u1_ml100k)
best_estimator = rs.best_estimator['mae']
# recompute MAE of best_estimator
mae = cross_validate(best_estimator, u1_ml100k, measures=['MAE'],
cv=PredefinedKFold())['test_mae']
assert mae == rs.best_score['mae']
开发者ID:NicolasHug,项目名称:Surprise,代码行数:19,
示例9: testUniformPDF
点赞 6
# 需要导入模块: from scipy import stats [as 别名]
# 或者: from scipy.stats import uniform [as 别名]
def testUniformPDF(self):
with self.test_session():
a = tf.constant([-3.0] * 5 + [15.0])
b = tf.constant([11.0] * 5 + [20.0])
uniform = tf.contrib.distributions.Uniform(a=a, b=b)
a_v = -3.0
b_v = 11.0
x = np.array([-10.5, 4.0, 0.0, 10.99, 11.3, 17.0], dtype=np.float32)
def _expected_pdf():
pdf = np.zeros_like(x) + 1.0 / (b_v - a_v)
pdf[x > b_v] = 0.0
pdf[x < a_v] = 0.0
pdf[5] = 1.0 / (20.0 - 15.0)
return pdf
expected_pdf = _expected_pdf()
pdf = uniform.pdf(x)
self.assertAllClose(expected_pdf, pdf.eval())
log_pdf = uniform.log_pdf(x)
self.assertAllClose(np.log(expected_pdf), log_pdf.eval())
开发者ID:tobegit3hub,项目名称:deep_image_model,代码行数:26,
示例10: testUniformCDF
点赞 6
# 需要导入模块: from scipy import stats [as 别名]
# 或者: from scipy.stats import uniform [as 别名]
def testUniformCDF(self):
with self.test_session():
batch_size = 6
a = tf.constant([1.0] * batch_size)
b = tf.constant([11.0] * batch_size)
a_v = 1.0
b_v = 11.0
x = np.array([-2.5, 2.5, 4.0, 0.0, 10.99, 12.0], dtype=np.float32)
uniform = tf.contrib.distributions.Uniform(a=a, b=b)
def _expected_cdf():
cdf = (x - a_v) / (b_v - a_v)
cdf[x >= b_v] = 1
cdf[x < a_v] = 0
return cdf
cdf = uniform.cdf(x)
self.assertAllClose(_expected_cdf(), cdf.eval())
log_cdf = uniform.log_cdf(x)
self.assertAllClose(np.log(_expected_cdf()), log_cdf.eval())
开发者ID:tobegit3hub,项目名称:deep_image_model,代码行数:24,
示例11: testUniformSample
点赞 6
# 需要导入模块: from scipy import stats [as 别名]
# 或者: from scipy.stats import uniform [as 别名]
def testUniformSample(self):
with self.test_session():
a = tf.constant([3.0, 4.0])
b = tf.constant(13.0)
a1_v = 3.0
a2_v = 4.0
b_v = 13.0
n = tf.constant(100000)
uniform = tf.contrib.distributions.Uniform(a=a, b=b)
samples = uniform.sample(n, seed=137)
sample_values = samples.eval()
self.assertEqual(sample_values.shape, (100000, 2))
self.assertAllClose(sample_values[::, 0].mean(), (b_v + a1_v) / 2,
atol=1e-2)
self.assertAllClose(sample_values[::, 1].mean(), (b_v + a2_v) / 2,
atol=1e-2)
self.assertFalse(np.any(sample_values[::, 0] < a1_v) or np.any(
sample_values >= b_v))
self.assertFalse(np.any(sample_values[::, 1] < a2_v) or np.any(
sample_values >= b_v))
开发者ID:tobegit3hub,项目名称:deep_image_model,代码行数:23,
示例12: testUniformNans
点赞 6
# 需要导入模块: from scipy import stats [as 别名]
# 或者: from scipy.stats import uniform [as 别名]
def testUniformNans(self):
with self.test_session():
a = 10.0
b = [11.0, 100.0]
uniform = tf.contrib.distributions.Uniform(a=a, b=b)
no_nans = tf.constant(1.0)
nans = tf.constant(0.0) / tf.constant(0.0)
self.assertTrue(tf.is_nan(nans).eval())
with_nans = tf.stack([no_nans, nans])
pdf = uniform.pdf(with_nans)
is_nan = tf.is_nan(pdf).eval()
self.assertFalse(is_nan[0])
self.assertTrue(is_nan[1])
开发者ID:tobegit3hub,项目名称:deep_image_model,代码行数:18,
示例13: testUniformSampleWithShape
点赞 6
# 需要导入模块: from scipy import stats [as 别名]
# 或者: from scipy.stats import uniform [as 别名]
def testUniformSampleWithShape(self):
with self.test_session():
a = 10.0
b = [11.0, 20.0]
uniform = tf.contrib.distributions.Uniform(a, b)
pdf = uniform.pdf(uniform.sample((2, 3)))
# pylint: disable=bad-continuation
expected_pdf = [
[[1.0, 0.1],
[1.0, 0.1],
[1.0, 0.1]],
[[1.0, 0.1],
[1.0, 0.1],
[1.0, 0.1]],
]
# pylint: enable=bad-continuation
self.assertAllClose(expected_pdf, pdf.eval())
pdf = uniform.pdf(uniform.sample())
expected_pdf = [1.0, 0.1]
self.assertAllClose(expected_pdf, pdf.eval())
开发者ID:tobegit3hub,项目名称:deep_image_model,代码行数:24,
示例14: __init__
点赞 6
# 需要导入模块: from scipy import stats [as 别名]
# 或者: from scipy.stats import uniform [as 别名]
def __init__(self, lower, upper):
self.lower = lower
self.upper = upper
self.bounds = np.array([-1.0, 1.0])
if (self.lower is None) or (self.upper is None):
print('One or more bounds not specified. Assuming [0, 1].')
self.lower = 0.0
self.upper = 1.0
self.mean = 0.5 * (self.upper + self.lower)
self.variance = 1.0/12.0 * (self.upper - self.lower)**2
self.x_range_for_pdf = np.linspace(self.lower, self.upper, RECURRENCE_PDF_SAMPLES)
self.parent = uniform(loc=(self.lower), scale=(self.upper-self.lower))
self.skewness = 0.0
self.shape_parameter_A = 0.
self.shape_parameter_B = 0.
开发者ID:Effective-Quadratures,项目名称:Effective-Quadratures,代码行数:18,
示例15: get_cdf
点赞 6
# 需要导入模块: from scipy import stats [as 别名]
# 或者: from scipy.stats import uniform [as 别名]
def get_cdf(self, points=None):
"""
A uniform cumulative density function.
:param points:
Matrix of points which have to be evaluated
:param double lower:
Lower bound of the support of the uniform distribution.
:param double upper:
Upper bound of the support of the uniform distribution.
:return:
An array of N equidistant values over the support of the distribution.
:return:
Cumulative density values along the support of the uniform distribution.
"""
if points is not None:
return self.parent.cdf(points)
else:
raise ValueError( 'Please digit an input for getCDF method')
开发者ID:Effective-Quadratures,项目名称:Effective-Quadratures,代码行数:20,
示例16: get_pdf
点赞 6
# 需要导入模块: from scipy import stats [as 别名]
# 或者: from scipy.stats import uniform [as 别名]
def get_pdf(self, points=None):
"""
A uniform probability distribution.
:param points:
Matrix of points which have to be evaluated
:param double lower:
Lower bound of the support of the uniform distribution.
:param double upper:
Upper bound of the support of the uniform distribution.
:return:
An array of N equidistant values over the support of the distribution.
:return:
Probability density values along the support of the uniform distribution.
"""
if points is not None:
return self.parent.pdf(points)
else:
raise ValueError( 'Please digit an input for get_pdf method')
开发者ID:Effective-Quadratures,项目名称:Effective-Quadratures,代码行数:20,
示例17: __init__
点赞 5
# 需要导入模块: from scipy import stats [as 别名]
# 或者: from scipy.stats import uniform [as 别名]
def __init__(self, outputs=None, inputs=None, low=0, high=1, rng=None):
assert not inputs
if rng is None:
rng = gu.gen_rng(0)
if outputs is None:
outputs = [0]
self.rng = rng
self.low = low
self.high = high
self.outputs = outputs
self.inputs = []
self.uniform = uniform(loc=self.low, scale=self.high-self.low)
开发者ID:probcomp,项目名称:cgpm,代码行数:14,
示例18: simulate
点赞 5
# 需要导入模块: from scipy import stats [as 别名]
# 或者: from scipy.stats import uniform [as 别名]
def simulate(self, rowid, targets, constraints=None, inputs=None, N=None):
assert not constraints
assert targets == self.outputs
x = self.rng.uniform(low=self.low, high=self.high)
return {self.outputs[0]: x}
开发者ID:probcomp,项目名称:cgpm,代码行数:7,
示例19: logpdf
点赞 5
# 需要导入模块: from scipy import stats [as 别名]
# 或者: from scipy.stats import uniform [as 别名]
def logpdf(self, rowid, targets, constraints=None, inputs=None):
assert not constraints
assert not inputs
assert targets.keys() == self.outputs
x = targets[self.outputs[0]]
return self.uniform.logpdf(x)
开发者ID:probcomp,项目名称:cgpm,代码行数:8,
示例20: __init__
点赞 5
# 需要导入模块: from scipy import stats [as 别名]
# 或者: from scipy.stats import uniform [as 别名]
def __init__(self, outputs=None, inputs=None, noise=None, rng=None):
if rng is None:
rng = gu.gen_rng(1)
if outputs is None:
outputs = [0]
if inputs is None:
inputs = [1]
if noise is None:
noise = .1
self.rng = rng
self.outputs = outputs
self.inputs = inputs
self.noise = noise
self.uniform = uniform(scale=self.noise)
开发者ID:probcomp,项目名称:cgpm,代码行数:16,
示例21: simulate
点赞 5
# 需要导入模块: from scipy import stats [as 别名]
# 或者: from scipy.stats import uniform [as 别名]
def simulate(self, rowid, targets, constraints=None, inputs=None, N=None):
assert targets == self.outputs
assert inputs.keys() == self.inputs
assert not constraints
x = inputs[self.inputs[0]]
noise = self.rng.uniform(high=self.noise)
if np.cos(x) < 0:
y = np.cos(x) + noise
else:
y = np.cos(x) - noise
return {self.outputs[0]: y}
开发者ID:probcomp,项目名称:cgpm,代码行数:13,
示例22: __init__
点赞 5
# 需要导入模块: from scipy import stats [as 别名]
# 或者: from scipy.stats import uniform [as 别名]
def __init__(self, outputs=None, inputs=None, noise=None, rng=None):
if rng is None:
rng = gu.gen_rng(1)
if outputs is None:
outputs = [0]
if inputs is None:
inputs = [1]
if noise is None:
noise = .1
self.rng = rng
self.outputs = outputs
self.inputs = inputs
self.noise = noise
self.uniform = uniform(loc=-self.noise, scale=2*self.noise)
开发者ID:probcomp,项目名称:cgpm,代码行数:16,
示例23: simulate
点赞 5
# 需要导入模块: from scipy import stats [as 别名]
# 或者: from scipy.stats import uniform [as 别名]
def simulate(self, rowid, targets, constraints=None, inputs=None, N=None):
assert targets == self.outputs
assert inputs.keys() == self.inputs
assert not constraints
x = inputs[self.inputs[0]]
u = self.rng.rand()
noise = self.rng.uniform(low=-self.noise, high=self.noise)
if u < .5:
y = x**2 + noise
else:
y = -(x**2 + noise)
return {self.outputs[0]: y}
开发者ID:probcomp,项目名称:cgpm,代码行数:14,
示例24: logpdf
点赞 5
# 需要导入模块: from scipy import stats [as 别名]
# 或者: from scipy.stats import uniform [as 别名]
def logpdf(self, rowid, targets, constraints=None, inputs=None):
assert targets.keys() == self.outputs
assert inputs.keys() == self.inputs
assert not constraints
x = inputs[self.inputs[0]]
y = targets[self.outputs[0]]
return logsumexp([
np.log(.5)+self.uniform.logpdf(y-x**2),
np.log(.5)+self.uniform.logpdf(-y-x**2)
])
开发者ID:probcomp,项目名称:cgpm,代码行数:12,
示例25: __init__
点赞 5
# 需要导入模块: from scipy import stats [as 别名]
# 或者: from scipy.stats import uniform [as 别名]
def __init__(self, nobs=50, x=None, distr_x=None, distr_noise=None):
if distr_x is None:
from scipy import stats
distr_x = stats.uniform
self.s_noise = 0.15
self.func = fg1eu
super(self.__class__, self).__init__(nobs=nobs, x=x,
distr_x=distr_x,
distr_noise=distr_noise)
开发者ID:birforce,项目名称:vnpy_crypto,代码行数:11,
示例26: likelihood
点赞 5
# 需要导入模块: from scipy import stats [as 别名]
# 或者: from scipy.stats import uniform [as 别名]
def likelihood(parameter_vector):
param_dict = {pname: pvalue for pname, pvalue in zip(pysb_sampled_parameter_names, parameter_vector)}
for pname, pvalue in param_dict.items():
#Change model parameter values to current location in parameter space
model.parameters[pname].value = 10**(pvalue)
#Simulate experimentally measured Ctotal values.
solver.run()
#Calculate log probability contribution from simulated experimental values.
logp_ctotal = np.sum(like_ctot.logpdf(solver.yobs['C_total']))
#If model simulation failed due to integrator errors, return a log probability of -inf.
if np.isnan(logp_ctotal):
logp_ctotal = -np.inf
return logp_ctotal
# Add vector of PySB rate parameters to be sampled as unobserved random variables to DREAM with uniform priors.
开发者ID:LoLab-VU,项目名称:PyDREAM,代码行数:28,
示例27: multidmodel_uniform
点赞 5
# 需要导入模块: from scipy import stats [as 别名]
# 或者: from scipy.stats import uniform [as 别名]
def multidmodel_uniform():
"""Multidimensional model with uniform priors."""
lower = np.array([-5, -9, 5, 3])
upper = np.array([10, 2, 7, 8])
range = upper-lower
x = SampledParam(uniform, loc=lower, scale=range)
like =simple_likelihood
return [x], like
开发者ID:LoLab-VU,项目名称:PyDREAM,代码行数:13,
示例28: parallel_params
点赞 5
# 需要导入模块: from scipy import stats [as 别名]
# 或者: from scipy.stats import uniform [as 别名]
def parallel_params(log_dir, niter=10000, seed=123456789):
"""
Create the parameters for a parallel run.
@param log_dir: The directory to store the results in.
@param niter: The number of iterations to perform.
@param seed: The seed for the random number generators.
@return: Returns a tuple containing the parameters.
"""
static_params = {
'ninputs': 784,
'trim': 1e-4,
'disable_boost': True,
'seed': seed,
'pct_active': None,
'random_permanence': True,
'pwindow': 0.5,
'global_inhibition': True,
'syn_th': 0.5,
'pinc': 0.001,
'pdec': 0.001,
'nepochs': 10
}
dynamic_params = {
'ncolumns': randint(500, 3500),
'nactive': uniform(0.5, 0.35), # As a % of the number of columns
'nsynapses': randint(25, 784),
'seg_th': uniform(0, 0.2), # As a % of the number of synapses
'log_dir': log_dir
}
# Build the parameter generator
gen = ParamGenerator(dynamic_params, niter, 1, 784)
params = {key:gen for key in dynamic_params}
return static_params, params
开发者ID:tehtechguy,项目名称:mHTM,代码行数:42,
示例29: check_initializer_statistics
点赞 5
# 需要导入模块: from scipy import stats [as 别名]
# 或者: from scipy.stats import uniform [as 别名]
def check_initializer_statistics(self, backend_config, n):
from scipy import stats
xp = backend_config.xp
ws = numpy.empty((n,) + self.shape, dtype=self.dtype)
ws = backend_config.get_array(ws)
for i in range(n):
initializer = self.target(**self.target_kwargs)
initializer(xp.squeeze(ws[i:i+1], axis=0))
fan = self.fan_option or default_fan.get(self.target)
expected_max = self.scale or default_scale.get(self.target) or 1.
expected_max *= default_coeff.get(self.target) or 1.
if fan is not None:
if fan == 'fan_in':
expected_max *= math.sqrt(1. / self.fans[0])
elif fan == 'fan_out':
expected_max *= math.sqrt(1. / self.fans[1])
elif fan == 'fan_avg':
expected_max *= math.sqrt(2. / sum(self.fans))
else:
assert False
sampless = cuda.to_cpu(ws.reshape(n, -1).T)
alpha = 0.01 / len(sampless)
for samples in sampless:
_, p = stats.kstest(
samples,
stats.uniform(-expected_max, 2*expected_max).cdf
)
assert p >= alpha
开发者ID:chainer,项目名称:chainer,代码行数:33,
注:本文中的scipy.stats.uniform方法示例整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。