当前位置: 首页 > 工具软件 > Genghis > 使用案例 >

HDU - 4126 Genghis Khan the Conqueror(树形DP + 最小生成树)

有品
2023-12-01

题目大意:有N个点,M条路,现在给出K条路,这K条路是在M条路中将权值扩大的路。每给出一条,就要求求出最小生成树的权值
现在问每条路的最小生成树的权值和/K的最小值是多少

解题思路:先得到最小生成树,然后判断路是不是最小生成树的树边,如果不是,就不影响了
如果是的话,就要判断一下是不是要去掉该边,再添加新的边。
如果去掉该边的话,就相当于把最小生成树划分成了两个块,所以现在需要的是一条最小边来连接两个块
我们设dp[u][v]为u到 v和到以v为根的树的所有点的最小权值(以v为根就相当于有一条树边的一个结点是v的边断了,然后分成了两个块,而u和v在不同的块),这个可以通过dfs得到
得到这个了,那就可以得到每条树边断后,需要添加的最小权值边了,也是通过dfs得到

#include <cstdio>
#include <cstring>
#include <vector>
using namespace std;

#define N 3010
#define ll long long
const int INF = 1000000000;

int n, m, tot;
int dis[N][N], best[N][N], d[N], f[N], dp[N][N];
bool vis[N];
vector<int> G[N];

void init() {
    memset(dis, 0x3f, sizeof(dis));
    int u, v, c;
    for (int i = 0; i < m; i++) {
        scanf("%d%d%d", &u, &v, &c);
        dis[u][v] = dis[v][u] = c;
    }
}


ll prim() {
    memset(vis, 0, sizeof(vis));
    ll ans = 0;
    for (int i = 0; i < n; i++) {
        d[i] = dis[0][i];
        f[i] = 0;
        G[i].clear();
    }
    d[0] = INF;
    f[0] = -1;
    vis[0] = true;

    for (int i = 0; i < n - 1; i++) {
        int x = 0;
        for (int j = 1; j < n; j++)
            if (!vis[j] && d[j] < d[x])
                x = j;

        vis[x] = true;
        ans += d[x];

        if (f[x] != -1) {
            G[x].push_back(f[x]);
            G[f[x]].push_back(x);
        }

        for (int j = 1; j < n; j++) 
            if (!vis[j] && d[j] > dis[x][j]) {
                d[j] = dis[x][j]; 
                f[j] = x;
            }
    }
    return ans;
}

//得到dp[u][v]
int dfs1(int u, int fa, int root) {
    for (int i = 0; i < G[u].size(); i++) {
        int v = G[u][i];
        if (v != fa) 
            dp[root][u] = min(dp[root][u], dfs1(v, u, root));
    }
    if (fa != root) dp[root][u] = min(dp[root][u], dis[root][u]);
    return dp[root][u];
}

//得到树边断裂后需要的最小权值边
int dfs2(int u, int fa, int root) {
    int ans = dp[u][root];
    for (int i = 0; i < G[u].size(); i++) {
        int v = G[u][i];
        if (v != fa) ans = min(ans, dfs2(v, u, root));
    }
    return ans;
}

void solve() {
    memset(dp, 0x3f, sizeof(dp));
    ll MinTreeValue = prim();
    double ans = 0;
    for (int i = 0; i < n; i++)
        dfs1(i, -1, i);
    for (int i = 0; i < n; i++)
        for (int j = 0; j < G[i].size(); j++) {
            int v = G[i][j];
            best[i][v] = best[v][i] = dfs2(v, i, i); 
        }
    int u, v, c, q;
    scanf("%d", &q);
    for (int i = 0; i < q; i++) {
        scanf("%d%d%d", &u, &v, &c);
        if (f[u] != v && f[v] != u) 
            ans += MinTreeValue * 1.0;
        else
            ans += MinTreeValue * 1.0 - dis[u][v] + min(best[u][v], c);
    }

    printf("%.4f\n", ans / q);
}

int main() {
    while (scanf("%d%d", &n, &m) != EOF && n + m ) {
        init();
        solve();
    }
    return 0;
}
#include <cstdio>
#include <cstring>
#include <vector>
using namespace std;

#define N 3010
#define ll long long
const int INF = 1000000000;

int n, m, tot;
int dis[N][N], d[N], f[N], dp[N][N];
bool vis[N];
vector<int> G[N];

void init() {
    memset(dis, 0x3f, sizeof(dis));
    int u, v, c;
    for (int i = 0; i < m; i++) {
        scanf("%d%d%d", &u, &v, &c);
        dis[u][v] = dis[v][u] = c;
    }
}


ll prim() {
    memset(vis, 0, sizeof(vis));
    ll ans = 0;
    for (int i = 0; i < n; i++) {
        d[i] = dis[0][i];
        f[i] = 0;
        G[i].clear();
    }
    d[0] = INF;
    f[0] = -1;
    vis[0] = true;

    for (int i = 0; i < n - 1; i++) {
        int x = 0;
        for (int j = 1; j < n; j++)
            if (!vis[j] && d[j] < d[x])
                x = j;

        vis[x] = true;
        ans += d[x];

        if (f[x] != -1) {
            G[x].push_back(f[x]);
            G[f[x]].push_back(x);
        }

        for (int j = 1; j < n; j++) 
            if (!vis[j] && d[j] > dis[x][j]) {
                d[j] = dis[x][j]; 
                f[j] = x;
            }
    }
    return ans;
}

//得到dp[u][v]
int dfs1(int u, int fa, int root) {
    int res = INF;
    for (int i = 0; i < G[u].size(); i++) {
        int v = G[u][i];
        if (v == fa) continue;
        int tmp = dfs1(v, u, root);
        dp[u][v] = dp[v][u] = min(dp[u][v], tmp);
        res = min(res, tmp);
    }
    if (fa != root) res = min(res, dis[root][u]);
    return res;
}

void solve() {
    memset(dp, 0x3f, sizeof(dp));
    ll MinTreeValue = prim();
    double ans = 0;
    for (int i = 0; i < n; i++)
        dfs1(i, -1, i);
    int u, v, c, q;
    scanf("%d", &q);
    for (int i = 0; i < q; i++) {
        scanf("%d%d%d", &u, &v, &c);
        if (f[u] != v && f[v] != u) 
            ans += MinTreeValue * 1.0;
        else
            ans += MinTreeValue * 1.0 - dis[u][v] + min(dp[u][v], c);
    }

    printf("%.4f\n", ans / q);
}

int main() {
    while (scanf("%d%d", &n, &m) != EOF && n + m ) {
        init();
        solve();
    }
    return 0;
}
 类似资料: