http://mxnet.incubator.apache.org/versions/master/install/index.html?platform=Windows&language=R&processor=CPU
1 cran <- getOption("repos") 2 cran["dmlc"] <- "https://apache-mxnet.s3-accelerate.dualstack.amazonaws.com/R/CRAN/" 3 options(repos = cran) 4 install.packages("mxnet")
安装之前需要指定repository
一起安装的包
package ‘brew’ successfully unpacked and MD5 sums checked package ‘hms’ successfully unpacked and MD5 sums checked package ‘clipr’ successfully unpacked and MD5 sums checked package ‘XML’ successfully unpacked and MD5 sums checked package ‘Rook’ successfully unpacked and MD5 sums checked package ‘downloader’ successfully unpacked and MD5 sums checked package ‘igraph’ successfully unpacked and MD5 sums checked package ‘influenceR’ successfully unpacked and MD5 sums checked package ‘readr’ successfully unpacked and MD5 sums checked package ‘rgexf’ successfully unpacked and MD5 sums checked package ‘DiagrammeR’ successfully unpacked and MD5 sums checked package ‘visNetwork’ successfully unpacked and MD5 sums checked package ‘mxnet’ successfully unpacked and MD5 sums checked
额外的依赖
To run MXNet you also should have OpenCV and OpenBLAS installed.
第一步:数据准备
1 set.seed(0) 2 #随机分配训练集和测试集 3 train.ind = sample(1:nrow(inp), size=ceiling(0.7*nrow(inp))) 4 5 train.x = data.matrix(inp[train.ind,NIRDATA]) 6 train.y = inp[train.ind,NIC] 7 test.x = data.matrix(inp[-train.ind,NIRDATA]) 8 test.y = inp[-train.ind,NIC]
第二步:创建网络并训练
1 mx.set.seed(0) 2 3 model <- mx.mlp(train.x, train.y, hidden_node=c(7), out_node=1, out_activation="rmse", 4 num.round=2000, array.batch.size=15, learning.rate=0.05, momentum=0.9, 5 eval.metric=mx.metric.rmse)
hidden_node接受向量,c(100,50)代表两层隐含层,分别具有100和50个节点
out_node输出层
eval.metric=mx.metric.rmse
评估方法,rmse 标准差
评估测试集 predict(model,test.x)->prd plot(prd,test.y)