当前位置: 首页 > 编程笔记 >

tensorflow学习笔记之简单的神经网络训练和测试

西门品
2023-03-14
本文向大家介绍tensorflow学习笔记之简单的神经网络训练和测试,包括了tensorflow学习笔记之简单的神经网络训练和测试的使用技巧和注意事项,需要的朋友参考一下

本文实例为大家分享了用简单的神经网络来训练和测试的具体代码,供大家参考,具体内容如下

刚开始学习tf时,我们从简单的地方开始。卷积神经网络(CNN)是由简单的神经网络(NN)发展而来的,因此,我们的第一个例子,就从神经网络开始。

神经网络没有卷积功能,只有简单的三层:输入层,隐藏层和输出层。

数据从输入层输入,在隐藏层进行加权变换,最后在输出层进行输出。输出的时候,我们可以使用softmax回归,输出属于每个类别的概率值。借用极客学院的图表示如下:

其中,x1,x2,x3为输入数据,经过运算后,得到三个数据属于某个类别的概率值y1,y2,y3. 用简单的公式表示如下:

在训练过程中,我们将真实的结果和预测的结果相比(交叉熵比较法),会得到一个残差。公式如下:

y是我们预测的概率值,y'是实际的值。这个残差越小越好,我们可以使用梯度下降法,不停地改变W和b的值,使得残差逐渐变小,最后收敛到最小值。这样训练就完成了,我们就得到了一个模型(W和b的最优化值)。

完整代码如下:

import tensorflow as tf
import tensorflow.examples.tutorials.mnist.input_data as input_data
mnist = input_data.read_data_html" target="_blank">sets("MNIST_data/", one_hot=True)
x = tf.placeholder(tf.float32, [None, 784])
y_actual = tf.placeholder(tf.float32, shape=[None, 10])
W = tf.Variable(tf.zeros([784,10]))    #初始化权值W
b = tf.Variable(tf.zeros([10]))      #初始化偏置项b
y_predict = tf.nn.softmax(tf.matmul(x,W) + b)   #加权变换并进行softmax回归,得到预测概率
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_actual*tf.log(y_predict),reduction_indies=1))  #求交叉熵
train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)  #用梯度下降法使得残差最小

correct_prediction = tf.equal(tf.argmax(y_predict,1), tf.argmax(y_actual,1))  #在测试阶段,测试准确度计算
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))        #多个批次的准确度均值

init = tf.initialize_all_variables()
with tf.Session() as sess:
  sess.run(init)
  for i in range(1000):        #训练阶段,迭代1000次
    batch_xs, batch_ys = mnist.train.next_batch(100)      #按批次训练,每批100行数据
    sess.run(train_step, feed_dict={x: batch_xs, y_actual: batch_ys})  #执行训练
    if(i%100==0):         #每训练100次,测试一次
      print "accuracy:",sess.run(accuracy, feed_dict={x: mnist.test.images, y_actual: mnist.test.labels})

每训练100次,测试一次,随着训练次数的增加,测试精度也在增加。训练结束后,1W行数据测试的平均精度为91%左右,不是太高,肯定没有CNN高。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持小牛知识库。

 类似资料:
  • 本文向大家介绍tensorflow入门之训练简单的神经网络方法,包括了tensorflow入门之训练简单的神经网络方法的使用技巧和注意事项,需要的朋友参考一下 这几天开始学tensorflow,先来做一下学习记录 一.神经网络解决问题步骤: 1.提取问题中实体的特征向量作为神经网络的输入。也就是说要对数据集进行特征工程,然后知道每个样本的特征维度,以此来定义输入神经元的个数。 2.定义神经网络的结

  • 我知道前馈神经网络的基本知识,以及如何使用反向传播算法对其进行训练,但我正在寻找一种算法,以便使用强化学习在线训练神经网络。 例如,我想用人工神经网络解决手推车杆摆动问题。在这种情况下,我不知道应该怎么控制钟摆,我只知道我离理想位置有多近。我需要让安在奖惩的基础上学习。因此,监督学习不是一种选择。 另一种情况类似于蛇游戏,反馈被延迟,并且仅限于进球和反进球,而不是奖励。 我可以为第一种情况想出一些

  • 本文向大家介绍tensorflow学习笔记之mnist的卷积神经网络实例,包括了tensorflow学习笔记之mnist的卷积神经网络实例的使用技巧和注意事项,需要的朋友参考一下 mnist的卷积神经网络例子和上一篇博文中的神经网络例子大部分是相同的。但是CNN层数要多一些,网络模型需要自己来构建。 程序比较复杂,我就分成几个部分来叙述。 首先,下载并加载数据: 定义四个函数,分别用于初始化权值W

  • 我试图用TensorFlow建立一个简单的神经网络。目标是在32像素x 32像素的图像中找到矩形的中心。矩形由五个向量描述。第一个向量是位置向量,其他四个是方向向量,组成矩形边。一个向量有两个值(x和y)。 该图像的相应输入为(2,5)(0,4)(6,0)(0,-4)(-6,0)。中心(以及所需输出)位于(5,7)。 我想出的代码如下所示: 遗憾的是,网络无法正常学习。结果太离谱了。例如,[[3.

  • 我计划编写一个国际象棋引擎,它使用深度卷积神经网络来评估国际象棋的位置。我将使用位板来表示棋盘状态,这意味着输入层应该有12*64个神经元用于位置,1个用于玩家移动(0表示黑色,1表示白色)和4个神经元用于铸币权(wks、bks、wqs、bqs)。将有两个隐藏层,每个层有515个神经元,一个输出神经元的值介于-1表示黑色获胜,1表示白色获胜,0表示相等的位置。所有神经元都将使用tanh()激活函数

  • 官方的游戏示例 webcam-transfer-learning,建议玩一玩,是基于 MobileNet 的一个迁移学习的例子。 Transfer learning - Train a neural network to predict from webcam data Before we begin, we highly recommend playing with the demo. Try