主要学习资源来自莫烦: github连接 等有时间更新了, 发一下自己团队的项目实现的部分a3c代码
Asynchronous Advantage Actor-Critic (A3C) for playing Super Mario Bros 是超级马里奥兄弟的 A3C 算法,用于训练代理玩超级马里奥兄弟。 它可以: 通过运行 python train.py 来训练模型 通过运行 python test.py 来测试已经过训练的模型 样本示例: 要求: python 3.6 gym cv2 pytorch numpy
A3C的算法实际上就是将Actor-Critic放在了多个线程中进行同步训练. 可以想象成几个人同时在玩一样的游戏, 而他们玩游戏的经验都会同步上传到一个中央大脑. 然后他们又从中央大脑中获取最新的玩游戏方法. **这样, 对于这几个人, 他们的好处是:**中央大脑汇集了所有人的经验, 是最会玩游戏的一个, 他们能时不时获取到中央大脑的必杀招, 用在自己的场景中. **对于中央大脑的好处是:**中
本文向大家介绍Pytorch实现GoogLeNet的方法,包括了Pytorch实现GoogLeNet的方法的使用技巧和注意事项,需要的朋友参考一下 GoogLeNet也叫InceptionNet,在2014年被提出,如今已到V4版本。GoogleNet比VGGNet具有更深的网络结构,一共有22层,但是参数比AlexNet要少12倍,但是计算量是AlexNet的4倍,原因就是它采用很有效的Ince
本文向大家介绍利用Pytorch实现简单的线性回归算法,包括了利用Pytorch实现简单的线性回归算法的使用技巧和注意事项,需要的朋友参考一下 最近听了张江老师的深度学习课程,用Pytorch实现神经网络预测,之前做Titanic生存率预测的时候稍微了解过Tensorflow,听说Tensorflow能做的Pyorch都可以做,而且更方便快捷,自己尝试了一下代码的逻辑确实比较简单。 Pytorch
本文向大家介绍Pytorch 实现sobel算子的卷积操作详解,包括了Pytorch 实现sobel算子的卷积操作详解的使用技巧和注意事项,需要的朋友参考一下 卷积在pytorch中有两种实现,一种是torch.nn.Conv2d(),一种是torch.nn.functional.conv2d(),这两种方式本质都是执行卷积操作,对输入的要求也是一样的,首先需要输入的是一个torch.autogr
本文向大家介绍PyTorch中的C++扩展实现,包括了PyTorch中的C++扩展实现的使用技巧和注意事项,需要的朋友参考一下 今天要聊聊用 PyTorch 进行 C++ 扩展。 在正式开始前,我们需要了解 PyTorch 如何自定义module。这其中,最常见的就是在 python 中继承torch.nn.Module,用 PyTorch 中已有的 operator 来组装成自己的模块。这种方式
本文向大家介绍pytorch实现线性拟合方式,包括了pytorch实现线性拟合方式的使用技巧和注意事项,需要的朋友参考一下 一维线性拟合 数据为y=4x+5加上噪音 结果: 多维: 以上这篇pytorch实现线性拟合方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持呐喊教程。
本文向大家介绍dpn网络的pytorch实现方式,包括了dpn网络的pytorch实现方式的使用技巧和注意事项,需要的朋友参考一下 我就废话不多说了,直接上代码吧! 以上这篇dpn网络的pytorch实现方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持呐喊教程。