当前位置: 首页 > 工具软件 > nlp-class > 使用案例 >

自然语言处理1(NLP)------NLP--Basic Embedding Model

慕容越泽
2023-12-01

NLP–Basic Embedding Model

@Tae Hwan Jung @graykode

import tensorflow as tf
import numpy as np

tf.reset_default_graph()

sentences = [ "i like dog", "i love coffee", "i hate milk"]

word_list = " ".join(sentences).split()
word_list = list(set(word_list))
word_dict = {w: i for i, w in enumerate(word_list)}
number_dict = {i: w for i, w in enumerate(word_list)}
n_class = len(word_dict) # number of Vocabulary

# NNLM Parameter
n_step = 2 # number of steps ['i like', 'i love', 'i hate']
n_hidden = 2 # number of hidden units

def make_batch(sentences):
    input_batch = []
    target_batch = []

    for sen in sentences:
        word = sen.split()
        input = [word_dict[n] for n in word[:-1]]
        target = word_dict[word[-1]]

        input_batch.append(np.eye(n_class)[input])
        target_batch.append(np.eye(n_class)[target])

    return input_batch, target_batch

# Model
X = tf.placeholder(tf.float32, [None, n_step, n_class]) # [batch_size, number of steps, number of Vocabulary]
Y = tf.placeholder(tf.float32, [None, n_class])

input = tf.reshape(X, shape=[-1, n_step * n_class]) # [batch_size, n_step * n_class]
H = tf.Variable(tf.random_normal([n_step * n_class, n_hidden]))
d = tf.Variable(tf.random_normal([n_hidden]))
U = tf.Variable(tf.random_normal([n_hidden, n_class]))
b = tf.Variable(tf.random_normal([n_class]))

tanh = tf.nn.tanh(d + tf.matmul(input, H)) # [batch_size, n_hidden]
model = tf.matmul(tanh, U) + b # [batch_size, n_class]

cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(logits=model, labels=Y))
optimizer = tf.train.AdamOptimizer(0.001).minimize(cost)
prediction =tf.argmax(model, 1)

# Training
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init)

input_batch, target_batch = make_batch(sentences)

for epoch in range(5000):
    _, loss = sess.run([optimizer, cost], feed_dict={X: input_batch, Y: target_batch})
    if (epoch + 1)%1000 == 0:
        print('Epoch:', '%04d' % (epoch + 1), 'cost =', '{:.6f}'.format(loss))

# Predict
predict =  sess.run([prediction], feed_dict={X: input_batch})

# Test
input = [sen.split()[:2] for sen in sentences]
print([sen.split()[:2] for sen in sentences], '->', [number_dict[n] for n in predict[0]])

NNLM-Torch.py

@Tae Hwan Jung @graykode

import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from torch.autograd import Variable

dtype = torch.FloatTensor

sentences = [ "i like dog", "i love coffee", "i hate milk"]

word_list = " ".join(sentences).split()
word_list = list(set(word_list))
word_dict = {w: i for i, w in enumerate(word_list)}
number_dict = {i: w for i, w in enumerate(word_list)}
n_class = len(word_dict) # number of Vocabulary

# NNLM Parameter
n_step = 2 # n-1
n_hidden = 2 # h

def make_batch(sentences):
    input_batch = []
    target_batch = []

    for sen in sentences:
        word = sen.split()
        input = [word_dict[n] for n in word[:-1]]
        target = word_dict[word[-1]]

        input_batch.append(np.eye(n_class)[input])
        target_batch.append(target)

    return input_batch, target_batch

# Model
class NNLM(nn.Module):
    def __init__(self):
        super(NNLM, self).__init__()

        self.H = nn.Parameter(torch.randn(n_step * n_class, n_hidden).type(dtype))
        self.W = nn.Parameter(torch.randn(n_step * n_class, n_class).type(dtype))
        self.d = nn.Parameter(torch.randn(n_hidden).type(dtype))
        self.U = nn.Parameter(torch.randn(n_hidden, n_class).type(dtype))
        self.b = nn.Parameter(torch.randn(n_class).type(dtype))

    def forward(self, X):
        input = X.view(-1, n_step * n_class) # [batch_size, n_step * n_class]
        tanh = nn.functional.tanh(self.d + torch.mm(input, self.H)) # [batch_size, n_hidden]
        output = self.b + torch.mm(input, self.W) + torch.mm(tanh, self.U) # [batch_size, n_class]
        return output

model = NNLM()

criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)

input_batch, target_batch = make_batch(sentences)
input_batch = Variable(torch.Tensor(input_batch))
target_batch = Variable(torch.LongTensor(target_batch))

# Training
for epoch in range(5000):

    optimizer.zero_grad()
    output = model(input_batch)

    # output : [batch_size, n_class], target_batch : [batch_size] (LongTensor, not one-hot)
    loss = criterion(output, target_batch)
    if (epoch + 1)%1000 == 0:
        print('Epoch:', '%04d' % (epoch + 1), 'cost =', '{:.6f}'.format(loss))

    loss.backward()
    optimizer.step()

# Predict
predict = model(input_batch).data.max(1, keepdim=True)[1]

# Test
print([sen.split()[:2] for sen in sentences], '->', [number_dict[n.item()] for n in predict.squeeze()])
  • 1-2. Word2Vec(Skip-gram) - Embedding Words and Show Graph
  • Paper下载

  • Word2Vec-Tensor(NCE_loss).py

'''
  code by Tae Hwan Jung(Jeff Jung) @graykode
  reference : https://github.com/golbin/TensorFlow-Tutorials/blob/master/04%20-%20Neural%20Network%20Basic/03%20-%20Word2Vec.py
'''
import tensorflow as tf
import matplotlib.pyplot as plt
import numpy as np

tf.reset_default_graph()

# 3 Words Sentence
sentences = [ "i like dog", "i like cat", "i like animal",
              "dog cat animal", "apple cat dog like", "dog fish milk like",
              "dog cat eyes like", "i like apple", "apple i hate",
              "apple i movie book music like", "cat dog hate", "cat dog like"]

word_sequence = " ".join(sentences).split()
word_list = " ".join(sentences).split()
word_list = list(set(word_list))
word_dict = {w: i for i, w in enumerate(word_list)}

# Word2Vec Parameter
batch_size = 20
embedding_size = 2 # To show 2 dim embedding graph
num_sampled = 10 # for negative sampling, less than batch_size
voc_size = len(word_list)

def random_batch(data, size):
    random_inputs = []
    random_labels = []
    random_index = np.random.choice(range(len(data)), size, replace=False)

    for i in random_index:
        random_inputs.append(data[i][0])  # target
        random_labels.append([data[i][1]])  # context word

    return random_inputs, random_labels

# Make skip gram of one size window
skip_grams = []
for i in range(1, len(word_sequence) - 1):
    target = word_dict[word_sequence[i]]
    context = [word_dict[word_sequence[i - 1]], word_dict[word_sequence[i + 1]]]

    for w in context:
        skip_grams.append([target, w])

# Model
inputs = tf.placeholder(tf.int32, shape=[batch_size])
labels = tf.placeholder(tf.int32, shape=[batch_size, 1]) # To use tf.nn.nce_loss, [batch_size, 1]

embeddings = tf.Variable(tf.random_uniform([voc_size, embedding_size], -1.0, 1.0))
selected_embed = tf.nn.embedding_lookup(embeddings, inputs)

nce_weights = tf.Variable(tf.random_uniform([voc_size, embedding_size], -1.0, 1.0))
nce_biases = tf.Variable(tf.zeros([voc_size]))

# Loss and optimizer
cost = tf.reduce_mean(tf.nn.nce_loss(nce_weights, nce_biases, labels, selected_embed, num_sampled, voc_size))
optimizer = tf.train.AdamOptimizer(0.001).minimize(cost)

# Training
with tf.Session() as sess:
    init = tf.global_variables_initializer()
    sess.run(init)

    for epoch in range(5000):
        batch_inputs, batch_labels = random_batch(skip_grams, batch_size)
        _, loss = sess.run([optimizer, cost], feed_dict={inputs: batch_inputs, labels: batch_labels})

        if (epoch + 1) % 1000 == 0:
            print('Epoch:', '%04d' % (epoch + 1), 'cost =', '{:.6f}'.format(loss))

    trained_embeddings = embeddings.eval()

for i, label in enumerate(word_list):
    x, y = trained_embeddings[i]
    plt.scatter(x, y)
    plt.annotate(label, xy=(x, y), xytext=(5, 2), textcoords='offset points', ha='right', va='bottom')
plt.show()

Word2Vec-Tensor(Softmax).py

'''
  code by Tae Hwan Jung(Jeff Jung) @graykode
'''
import tensorflow as tf
import matplotlib.pyplot as plt
import numpy as np

tf.reset_default_graph()

# 3 Words Sentence
sentences = [ "i like dog", "i like cat", "i like animal",
              "dog cat animal", "apple cat dog like", "dog fish milk like",
              "dog cat eyes like", "i like apple", "apple i hate",
              "apple i movie book music like", "cat dog hate", "cat dog like"]

word_sequence = " ".join(sentences).split()
word_list = " ".join(sentences).split()
word_list = list(set(word_list))
word_dict = {w: i for i, w in enumerate(word_list)}

# Word2Vec Parameter
batch_size = 20
embedding_size = 2 # To show 2 dim embedding graph
voc_size = len(word_list)

def random_batch(data, size):
    random_inputs = []
    random_labels = []
    random_index = np.random.choice(range(len(data)), size, replace=False)

    for i in random_index:
        random_inputs.append(np.eye(voc_size)[data[i][0]])  # target
        random_labels.append(np.eye(voc_size)[data[i][1]])  # context word

    return random_inputs, random_labels

# Make skip gram of one size window
skip_grams = []
for i in range(1, len(word_sequence) - 1):
    target = word_dict[word_sequence[i]]
    context = [word_dict[word_sequence[i - 1]], word_dict[word_sequence[i + 1]]]

    for w in context:
        skip_grams.append([target, w])

# Model
inputs = tf.placeholder(tf.float32, shape=[None, voc_size])
labels = tf.placeholder(tf.float32, shape=[None, voc_size])

# W and WT is not Traspose relationship
W = tf.Variable(tf.random_uniform([voc_size, embedding_size], -1.0, 1.0))
WT = tf.Variable(tf.random_uniform([embedding_size, voc_size], -1.0, 1.0))

hidden_layer = tf.matmul(inputs, W) # [batch_size, embedding_size]
output_layer = tf.matmul(hidden_layer, WT) # [batch_size, voc_size]

cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(logits=output_layer, labels=labels))
optimizer = tf.train.AdamOptimizer(0.001).minimize(cost)

with tf.Session() as sess:
    init = tf.global_variables_initializer()
    sess.run(init)

    for epoch in range(5000):
        batch_inputs, batch_labels = random_batch(skip_grams, batch_size)
        _, loss = sess.run([optimizer, cost], feed_dict={inputs: batch_inputs, labels: batch_labels})

        if (epoch + 1)%1000 == 0:
            print('Epoch:', '%04d' % (epoch + 1), 'cost =', '{:.6f}'.format(loss))

        trained_embeddings = W.eval()

for i, label in enumerate(word_list):
    x, y = trained_embeddings[i]
    plt.scatter(x, y)
    plt.annotate(label, xy=(x, y), xytext=(5, 2), textcoords='offset points', ha='right', va='bottom')
plt.show()

Word2Vec-Torch(Softmax).py

'''
  code by Tae Hwan Jung(Jeff Jung) @graykode
'''
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from torch.autograd import Variable
import matplotlib.pyplot as plt

dtype = torch.FloatTensor

# 3 Words Sentence
sentences = [ "i like dog", "i like cat", "i like animal",
              "dog cat animal", "apple cat dog like", "dog fish milk like",
              "dog cat eyes like", "i like apple", "apple i hate",
              "apple i movie book music like", "cat dog hate", "cat dog like"]

word_sequence = " ".join(sentences).split()
word_list = " ".join(sentences).split()
word_list = list(set(word_list))
word_dict = {w: i for i, w in enumerate(word_list)}

# Word2Vec Parameter
batch_size = 20  # To show 2 dim embedding graph
embedding_size = 2  # To show 2 dim embedding graph
voc_size = len(word_list)

def random_batch(data, size):
    random_inputs = []
    random_labels = []
    random_index = np.random.choice(range(len(data)), size, replace=False)

    for i in random_index:
        random_inputs.append(np.eye(voc_size)[data[i][0]])  # target
        random_labels.append(data[i][1])  # context word

    return random_inputs, random_labels

# Make skip gram of one size window
skip_grams = []
for i in range(1, len(word_sequence) - 1):
    target = word_dict[word_sequence[i]]
    context = [word_dict[word_sequence[i - 1]], word_dict[word_sequence[i + 1]]]

    for w in context:
        skip_grams.append([target, w])

# Model
class Word2Vec(nn.Module):
    def __init__(self):
        super(Word2Vec, self).__init__()

        # W and WT is not Traspose relationship
        self.W = nn.Parameter(-2 * torch.rand(voc_size, embedding_size) + 1).type(dtype) # voc_size > embedding_size Weight
        self.WT = nn.Parameter(-2 * torch.rand(embedding_size, voc_size) + 1).type(dtype) # embedding_size > voc_size Weight

    def forward(self, X):
        # X : [batch_size, voc_size]
        hidden_layer = torch.matmul(X, self.W) # hidden_layer : [batch_size, embedding_size]
        output_layer = torch.matmul(hidden_layer, self.WT) # output_layer : [batch_size, voc_size]
        return output_layer

model = Word2Vec()

criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)

# Training
for epoch in range(5000):

    input_batch, target_batch = random_batch(skip_grams, batch_size)

    input_batch = Variable(torch.Tensor(input_batch))
    target_batch = Variable(torch.LongTensor(target_batch))

    optimizer.zero_grad()
    output = model(input_batch)

    # output : [batch_size, voc_size], target_batch : [batch_size] (LongTensor, not one-hot)
    loss = criterion(output, target_batch)
    if (epoch + 1)%1000 == 0:
        print('Epoch:', '%04d' % (epoch + 1), 'cost =', '{:.6f}'.format(loss))

    loss.backward()
    optimizer.step()

for i, label in enumerate(word_list):
    W, WT = model.parameters()
    x,y = float(W[i][0]), float(W[i][1])
    plt.scatter(x, y)
    plt.annotate(label, xy=(x, y), xytext=(5, 2), textcoords='offset points', ha='right', va='bottom')
plt.show()
  • 1-3. FastText(Application Level) - Sentence Classification

Paper下载

Jupyter_Notebook代码示例下载

 类似资料: