本月的每月挑战会主题是NLP,我们会在本文帮你开启一种可能:使用pandas和python的自然语言工具包分析你Gmail邮箱中的内容。
NLP-风格的项目充满无限可能:
将Gmail收件箱加载到pandas
让我们从项目实例开始!首先我们需要一些数据。准备你的Gmail的数据存档(包括你最近的垃圾邮件和垃圾文件夹)。
https://www.google.com/settings/takeout
现在去散步吧,对于5.1G大小的信箱,我2.8G的存档需要发送一个多小时。
当你得到数据并为工程配置好本地环境之后好,使用下面的脚本将数据读入到pandas(强烈建议使用IPython进行数据分析)
from mailbox import mbox import pandas as pd def store_content(message, body=None): if not body: body = message.get_payload(decode=True) if len(message): contents = { "subject": message['subject'] or "", "body": body, "from": message['from'], "to": message['to'], "date": message['date'], "labels": message['X-Gmail-Labels'], "epilogue": message.epilogue, } return df.append(contents, ignore_index=True) # Create an empty DataFrame with the relevant columns df = pd.DataFrame( columns=("subject", "body", "from", "to", "date", "labels", "epilogue")) # Import your downloaded mbox file box = mbox('All mail Including Spam and Trash.mbox') fails = [] for message in box: try: if message.get_content_type() == 'text/plain': df = store_content(message) elif message.is_multipart(): # Grab any plaintext from multipart messages for part in message.get_payload(): if part.get_content_type() == 'text/plain': df = store_content(message, part.get_payload(decode=True)) break except: fails.append(message)
上面使用Python的mailbox模块读取并解析mbox格式的邮件。当然还可以使用更加优雅的方法来完成(比如,邮件中包含大量冗余、重复的数据,像回复中嵌入的“>>>”符号)。另外一个问题是无法处理一些特殊的字符,简单起见,我们进行丢弃处理;确认你在这一步没有忽略信箱中重要的部分。
需要注意的是,除了主题行,我们实际上并不打算利用其它内容。但是你可以对时间戳、邮件正文进行各种各样有趣的分析,通过标签进行分类等等。鉴于这只是帮助你入门的文章(碰巧会显示来自我自己信箱中的结果),我不想去考虑太多细节。
查找常用词语
现在我们已经得到了一些数据,那么来找出所有标题行中最常用的10个词语:
# Top 10 most common subject words from collections import Counter subject_word_bag = df.subject.apply(lambda t: t.lower() + " ").sum() Counter(subject_word_bag.split()).most_common()[:10] [('re:', 8508), ('-', 1188), ('the', 819), ('fwd:', 666), ('to', 572), ('new', 530), ('your', 528), ('for', 498), ('a', 463), ('course', 452)]
嗯,那些太常见了,下面尝试对常用词语做些限制:
from nltk.corpus import stopwords stops = [unicode(word) for word in stopwords.words('english')] + ['re:', 'fwd:', '-'] subject_words = [word for word in subject_word_bag.split() if word.lower() not in stops] Counter(subject_words).most_common()[:10] [('new', 530), ('course', 452), ('trackmaven', 334), ('question', 334), ('post', 286), ('content', 245), ('payment', 244), ('blog', 241), ('forum', 236), ('update', 220)]
除了人工移除几个最没价值的词语,我们也使用了NLTK的停用词语料库,使用前需要进行傻瓜式安装。现在可以看到我收件箱中的一些典型词语,但通常来讲在英文文本中并不一定同样是典型的。
二元词组和搭配词
NLTK可以进行另外一个有趣的测量是搭配原则。首先,我们来看下常用的“二元词组”,即经常一起成对出现的两个单词的集合:
from nltk import collocations bigram_measures = collocations.BigramAssocMeasures() bigram_finder = collocations.BigramCollocationFinder.from_words(subject_words) # Filter to top 20 results; otherwise this will take a LONG time to analyze bigram_finder.apply_freq_filter(20) for bigram in bigram_finder.score_ngrams(bigram_measures.raw_freq)[:10]: print bigram (('forum', 'content'), 0.005839453284373725) (('new', 'forum'), 0.005839453284373725) (('blog', 'post'), 0.00538045695634435) (('domain', 'names'), 0.004870461036311709) (('alpha', 'release'), 0.0028304773561811506) (('default', 'widget.'), 0.0026519787841697267) (('purechat:', 'question'), 0.0026519787841697267) (('using', 'default'), 0.0026519787841697267) (('release', 'third'), 0.002575479396164831) (('trackmaven', 'application'), 0.002524479804161567)
我们可以对三元词组(或n元词组)重复相同的步骤来查找更长的短语。这个例子中,“new forum content”是出现次数最多的三元词组,但是在上面例子的列表中,它却被分割成两部分并位居二元词组列表的前列。
另外一个稍微不同类型的搭配词的度量是基于点间互信息(pointwise mutual information)的。本质上,它所度量的是给定一个我们在指定文本中看到的单词,相对于他们通常在全部文档中单独出现的频率,另外一个单词出现的可能性。举例来说,通常,如果我的邮件主题使用单词“blog”与/或“post”很多,那么二元组“blog post”并不是一个有趣的信号,因为一个单词仍然可能不和另一个单词同时出现。根据这条准则,我们得到一个不同的二元组的集合。
for bigram in bigram_finder.nbest(bigram_measures.pmi, 5): print bigram ('4:30pm', '5pm') ('motley', 'fool') ('60,', '900,') ('population', 'cap') ('simple', 'goods')
因此,我没有收到很多提到单词“motley”或者“fool”的邮件主题,但是当我看到其中任意一个,那么“Motley Fool”可能是相关联的。
情感分析
最后,让我们尝试一些情感分析。为了快速入门,我们可以使用以NLTK为基础的TextBlob库,它提供了对于大量的常用NLP任务的简单访问。我们可以使用它内建的情感分析(基于模式)来计算主题的“极性(polarity)”。从,表示高度负面情绪的-1到表示正面情绪的1,其中0为中性(缺乏一个明确的信号)
接下来:分析一段时间内的你的收件箱;看看是否能够通过邮件分类,确定正文的发送者/标签/垃圾这些基本属性。使用潜在语义索引去揭示所涵盖的最常用的常规主题。将你的发件文件夹输入到马尔科夫模型(Markov model)中,结合词性标注生成看起来连贯的自动回复
请让我们知道你是否使用NLP尝试了有趣的项目分支,包含一份开源库将作为加分点。你可以在challenge.hackpad.com看下前面的展示,以找到更多的灵感!
来自 PythonProgramming.net 的文章,欢迎阅读自然语言处理系列教程,使用 Python 的自然语言工具包 NLTK 模块。
这是一本关于自然语言处理的书。所谓“自然语言”,是指人们日常交流使用的语言,如英语,印地语,葡萄牙语等。
问题内容: 我愿意开始在NLP上开发一个项目。我不知道可用的许多工具。谷歌搜索大约一个月后。我意识到openNLP可以成为我的解决方案。 不幸的是,我没有看到使用API的完整教程。它们都缺少一些常规步骤。我需要一个基础教程。我在网站上看到了很多下载,但不知道如何使用它们?我需要训练还是什么?..这是我想知道的- 如何安装/设置NLP系统,该系统可以- 解析英语句子单词 识别语音的不同部分 问题
本文向大家介绍Python编程使用NLTK进行自然语言处理详解,包括了Python编程使用NLTK进行自然语言处理详解的使用技巧和注意事项,需要的朋友参考一下 自然语言处理是计算机科学领域与人工智能领域中的一个重要方向。自然语言工具箱(NLTK,NaturalLanguageToolkit)是一个基于Python语言的类库,它也是当前最为流行的自然语言编程与开发工具。在进行自然语言处理研究和应用时
主要内容 前言 课程列表 推荐学习路线 数学基础初级 程序语言能力 机器学习简介 自然语言学习初级 数学和机器学习知识补充 自然语言处理中级 自然语言处理专项领域学习 前言 我们要求把这些课程的所有Notes,Slides以及作者强烈推荐的论文看懂看明白,并完成所有的老师布置的习题,而推荐的书籍是不做要求的,如果有些书籍是需要看完的,我们会进行额外的说明。 课程列表 课程 机构 参考书 Notes
本书旨在介绍如何通过Python和NLTK实现自然语言处理。本书包括三个模块。模块1介绍文本挖掘/NLP任务中所需的所有预处理步骤,包括文本的整理和清洗、词性标注、对文本的结构进行语法分析、文本的分类等。 模块2讲述如何使用Python 3的NLTK 3进行文本处理,包括标记文本、替换和校正单词、创建自定义语料库、词性标注、提取组块、文本分类等。模块3讨论了如何通过Python掌握自然语言处理,包