当前位置: 首页 > 编程笔记 >

Python编程使用NLTK进行自然语言处理详解

左凯定
2023-03-14
本文向大家介绍Python编程使用NLTK进行自然语言处理详解,包括了Python编程使用NLTK进行自然语言处理详解的使用技巧和注意事项,需要的朋友参考一下

自然语言处理是计算机科学领域与人工智能领域中的一个重要方向。自然语言工具箱(NLTK,NaturalLanguageToolkit)是一个基于Python语言的类库,它也是当前最为流行的自然语言编程与开发工具。在进行自然语言处理研究和应用时,恰当利用NLTK中提供的函数可以大幅度地提高效率。本文就将通过一些实例来向读者介绍NLTK的使用。

NLTK

NaturalLanguageToolkit,自然语言处理工具包,在NLP领域中,最常使用的一个Python库。

NLTK是一个开源的项目,包含:Python模块,数据集和教程,用于NLP的研究和开发  。
NLTK由Steven Bird和Edward Loper在宾夕法尼亚大学计算机和信息科学系开发。
NLTK包括图形演示和示例数据。其提供的教程解释了工具包支持的语言处理任务背后的基本概念。

开发环境:我所使用的Python版本是最新的3.5.1,NLTK版本是3.2。Python的安装不在本文的讨论范围内,我们略去不表。你可以从NLTK的官网上http://www.nltk.org/获得最新版本的NLTK。Anyway,使用pip指令来完成NLTK包的下载和安装无疑是最简便的方法。

当然,当你完成这一步时,其实还不够。因为NLTK是由许多许多的包来构成的,此时运行Python,并输入下面的指令(当然,第一条指令还是要导入NLTK包)

>>> import nltk 
>>> nltk.download() 

然后,Python Launcher会弹出下面这个界面,建议你选择安装所有的Packages,以免去日后一而再、再而三的进行安装,也为你的后续开发提供一个稳定的环境。某些包的Status显示“out of date”,你可以不必理会,它基本不影响你的使用与开发

既然你已经安装成功,我们来小试牛刀一下。当然本文涉及的主要任务都是自然语言处理中最常用,最基础的pre-processing过程,结合机器学习的高级应用我们会在后续文章中再进行介绍。

1、SentencesSegment(分句)

也就是说我们手头有一段文本,我们希望把它分成一个一个的句子。此时可以使用NLTK中的punktsentencesegmenter。来看示例代码

>>> sent_tokenizer = nltk.data.load('tokenizers/punkt/english.pickle') 
>>> paragraph = "The first time I heard that song was in Hawaii on radio.  
... I was just a kid, and loved it very much! What a fantastic song!" 
>>> sentences = sent_tokenizer.tokenize(paragraph) 
>>> sentences 
['The first time I heard that song was in Hawaii on radio.',  
 'I was just a kid, and loved it very much!',  
 'What a fantastic song!'] 

由此,我们便把一段话成功分句了。

2、SentencesSegment(分词)

接下来我们要把每个句话再切割成逐个单词。最简单的方法是使用NLTK包中的WordPuncttokenizer。来看示例代码

>>> from nltk.tokenize import WordPunctTokenizer 
>>> sentence = "Are you old enough to remember Michael Jackson attending  
... the Grammys with Brooke Shields and Webster sat on his lap during the show?" 
>>> words = WordPunctTokenizer().tokenize(sentence) 
>>> words 
['Are', 'you', 'old', 'enough', 'to', 'remember', 'Michael', 'Jackson', 'attending', 
 'the', 'Grammys', 'with', 'Brooke', 'Shields', 'and', 'Webster', 'sat', 'on', 'his', 
 'lap', 'during', 'the', 'show', '?'] 

我们的分词任务仍然完成的很好。除了WordPunct tokenizer之外,NLTK中还提供有另外三个分词方法,
TreebankWordTokenizer,PunktWordTokenizer和WhitespaceTokenizer,而且他们的用法与WordPunct tokenizer也类似。然而,显然我们并不满足于此。对于比较复杂的词型,WordPunct tokenizer往往并不胜任。此时我们需要借助正则表达式的强大能力来完成分词任务,此时我所使用的函数是regexp_tokenize()。来看下面这段话

>>> text = 'That U.S.A. poster-print costs $12.40...' 

目前市面上可以参考的在Python下进行自然语言处理的书籍是由Steven Bird、Ewan Klein、Edward Loper编写的Python 自然语言处理。但是该书的编写时间距今已有近十年的时间,由于软件包更新等语言,在新环境下进行开发时,书中的某些代码并不能很正常的运行。最后,我们举一个书中代码out of date的例子(对上面这就话进行分词),并给出相应的解决办法。首先来看书中的一段节录

>>> text = 'That U.S.A. poster-print costs $12.40...' 
>>> pattern = r'''''(?x)  # set flag to allow verbose regexps 
...   ([A-Z]\.)+    # abbreviations, e.g. U.S.A. 
...  | \w+(-\w+)*    # words with optional internal hyphens 
...  | \$?\d+(\.\d+)?%? # currency and percentages, e.g. $12.40, 82% 
...  | \.\.\.      # ellipsis 
...  | [][.,;"'?():-_`] # these are separate tokens; includes ], [ 
... ''' 
>>> nltk.regexp_tokenize(text, pattern) 

我们预期得到输出应该是这样的

['That', 'U.S.A.', 'poster-print', 'costs', '$12.40', '...'] 

但是我们实际得到的输出却是这样的(注意我们所使用的NLTK版本)

[('', '', ''), 
 ('A.', '', ''), 
 ('', '-print', ''), 
 ('', '', ''), 
 ('', '', '.40'), 
 ('', '', '')] 

会出现这样的问题是由于nltk.internals.compile_regexp_to_noncapturing()在V3.1版本的NLTK中已经被抛弃(尽管在更早的版本中它仍然可以运行),为此我们把之前定义的pattern稍作修改

pattern = r"""(?x)          # set flag to allow verbose regexps 
       (?:[A-Z]\.)+      # abbreviations, e.g. U.S.A. 
       |\d+(?:\.\d+)?%?    # numbers, incl. currency and percentages 
       |\w+(?:[-']\w+)*    # words w/ optional internal hyphens/apostrophe 
       |\.\.\.        # ellipsis 
       |(?:[.,;"'?():-_`])  # special characters with meanings 
      """ 

再次执行前面的语句,便会得到

>>> nltk.regexp_tokenize(text, pattern) 
['That', 'U.S.A.', 'poster-print', 'costs', '12.40', '...'] 

以上便是我们对NLTK这个自然语言处理工具包的初步探索,日后主页君将结合机器学习中的方法再来探讨一些更为深入的应用。最后,我想说Python 自然语言处理仍然是当前非常值得推荐的一本讲述利用NLTK和Python进行自然语言处理技术的非常值得推荐的书籍。

总结

以上就是本文关于Python编程使用NLTK进行自然语言处理详解的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站:

python中requests库session对象的妙用详解

13个最常用的Python深度学习库介绍

python爬虫系列Selenium定向爬取虎扑篮球图片详解

如有不足之处,欢迎留言指出。

 类似资料:
  • 本书旨在介绍如何通过Python和NLTK实现自然语言处理。本书包括三个模块。模块1介绍文本挖掘/NLP任务中所需的所有预处理步骤,包括文本的整理和清洗、词性标注、对文本的结构进行语法分析、文本的分类等。 模块2讲述如何使用Python 3的NLTK 3进行文本处理,包括标记文本、替换和校正单词、创建自定义语料库、词性标注、提取组块、文本分类等。模块3讨论了如何通过Python掌握自然语言处理,包

  • 本文向大家介绍Python自然语言处理 NLTK 库用法入门教程【经典】,包括了Python自然语言处理 NLTK 库用法入门教程【经典】的使用技巧和注意事项,需要的朋友参考一下 本文实例讲述了Python自然语言处理 NLTK 库用法。分享给大家供大家参考,具体如下: 在这篇文章中,我们将基于 Python 讨论自然语言处理(NLP)。本教程将会使用 Python NLTK 库。NLTK 是一个

  • 来自 PythonProgramming.net 的文章,欢迎阅读自然语言处理系列教程,使用 Python 的自然语言工具包 NLTK 模块。

  • 这是一本关于自然语言处理的书。所谓“自然语言”,是指人们日常交流使用的语言,如英语,印地语,葡萄牙语等。

  • 本文向大家介绍用Python进行一些简单的自然语言处理的教程,包括了用Python进行一些简单的自然语言处理的教程的使用技巧和注意事项,需要的朋友参考一下 本月的每月挑战会主题是NLP,我们会在本文帮你开启一种可能:使用pandas和python的自然语言工具包分析你Gmail邮箱中的内容。 NLP-风格的项目充满无限可能:     情感分析是对诸如在线评论、社交媒体等情感内容的测度。举例来说,关

  • 主要内容 前言 课程列表 推荐学习路线 数学基础初级 程序语言能力 机器学习简介 自然语言学习初级 数学和机器学习知识补充 自然语言处理中级 自然语言处理专项领域学习 前言 我们要求把这些课程的所有Notes,Slides以及作者强烈推荐的论文看懂看明白,并完成所有的老师布置的习题,而推荐的书籍是不做要求的,如果有些书籍是需要看完的,我们会进行额外的说明。 课程列表 课程 机构 参考书 Notes