当前位置: 首页 > 工具软件 > ogre4j > 使用案例 >

ogre 阴影技术分析记录

魏成济
2023-12-01

—-未完,待续

阴影技术,一般分为 基于 shadow volume 的和基于shadow map的。

shadow volume 原理是 通过模型EdgeData 计算阴影空间
shadow map原理是在灯光下,计算出物体在地面的区域,设定好颜色,动态纹理(阴影纹理)的形式叠加到接收阴影的物体上。
过程如下:
在场景管理器渲染开始时,创建阴影纹理。
mSceneMgr->_renderScene中调用

 if (isShadowTechniqueInUse())
    {
        // Prepare shadow materials
        initShadowVolumeMaterials();
    }

跟进initShadowVolumeMaterials();

    /* This should have been set in the SceneManager constructor, but if you
       created the SceneManager BEFORE the Root object, you will need to call
       SceneManager::_setDestinationRenderSystem manually.
     */
    assert( mDestRenderSystem );

    if (mShadowMaterialInitDone)
        return;

    if (!mShadowDebugPass)
    {
        MaterialPtr matDebug = 
            MaterialManager::getSingleton().getByName("Ogre/Debug/ShadowVolumes");
        if (matDebug.isNull())
        {
            // Create ,创建阴影的动态纹理
            matDebug = MaterialManager::getSingleton().create(
                "Ogre/Debug/ShadowVolumes", 
                ResourceGroupManager::INTERNAL_RESOURCE_GROUP_NAME);
            mShadowDebugPass = matDebug->getTechnique(0)->getPass(0);
            mShadowDebugPass->setSceneBlending(SBT_ADD); //SBT_ADD将纹理值叠加到场景物体上
            mShadowDebugPass->setLightingEnabled(false);
            mShadowDebugPass->setDepthWriteEnabled(false);
            TextureUnitState* t = mShadowDebugPass->createTextureUnitState();
            t->setColourOperationEx(LBX_MODULATE, LBS_MANUAL, LBS_CURRENT, 
                ColourValue(0.7, 0.0, 0.2));
            mShadowDebugPass->setCullingMode(CULL_NONE);

            if (mDestRenderSystem->getCapabilities()->hasCapability(
                RSC_VERTEX_PROGRAM))
                //渲染系统支持顶点程序的话就进行 阴影计算的程序
            {
            /*阴影gpu程序初始化,(ogre中自带的阴影gpu程序:
                 "Ogre/ShadowExtrudePointLight",
            "Ogre/ShadowExtrudePointLightDebug",
            "Ogre/ShadowExtrudeDirLight",
            "Ogre/ShadowExtrudeDirLightDebug",
            "Ogre/ShadowExtrudePointLightFinite",
            "Ogre/ShadowExtrudePointLightFiniteDebug",
            "Ogre/ShadowExtrudeDirLightFinite",
            "Ogre/ShadowExtrudeDirLightFiniteDebug")*/
                ShadowVolumeExtrudeProgram::initialise();

                // Enable the (infinite) point light extruder for now, just to get some params ,点光源的先打开
                mShadowDebugPass->setVertexProgram(
                    ShadowVolumeExtrudeProgram::programNames[ShadowVolumeExtrudeProgram::POINT_LIGHT]);
                mShadowDebugPass->setFragmentProgram(ShadowVolumeExtrudeProgram::frgProgramName);               
                mInfiniteExtrusionParams = 
                    mShadowDebugPass->getVertexProgramParameters();
                mInfiniteExtrusionParams->setAutoConstant(0, 
                    GpuProgramParameters::ACT_WORLDVIEWPROJ_MATRIX);
                mInfiniteExtrusionParams->setAutoConstant(4, 
                    GpuProgramParameters::ACT_LIGHT_POSITION_OBJECT_SPACE);
                // Note ignored extra parameter - for compatibility with finite extrusion vertex program
                mInfiniteExtrusionParams->setAutoConstant(5, 
                    GpuProgramParameters::ACT_SHADOW_EXTRUSION_DISTANCE);
            }   
            matDebug->compile();

        }
        else
        {
            mShadowDebugPass = matDebug->getTechnique(0)->getPass(0);

            if (mDestRenderSystem->getCapabilities()->hasCapability(RSC_VERTEX_PROGRAM))
            {
                mInfiniteExtrusionParams = mShadowDebugPass->getVertexProgramParameters();
            }
        }
    }
/********模板阴影的设置*******/
    if (!mShadowStencilPass)
    {

        MaterialPtr matStencil = MaterialManager::getSingleton().getByName(
            "Ogre/StencilShadowVolumes");
        if (matStencil.isNull())
        {
            // Init
            matStencil = MaterialManager::getSingleton().create(
                "Ogre/StencilShadowVolumes",
                ResourceGroupManager::INTERNAL_RESOURCE_GROUP_NAME);
            mShadowStencilPass = matStencil->getTechnique(0)->getPass(0);

            if (mDestRenderSystem->getCapabilities()->hasCapability(
                RSC_VERTEX_PROGRAM))
            {

                // Enable the finite point light extruder for now, just to get some params
                mShadowStencilPass->setVertexProgram(
                    ShadowVolumeExtrudeProgram::programNames[ShadowVolumeExtrudeProgram::POINT_LIGHT_FINITE]);
                mShadowStencilPass->setFragmentProgram(ShadowVolumeExtrudeProgram::frgProgramName);             
                mFiniteExtrusionParams = 
                    mShadowStencilPass->getVertexProgramParameters();
                mFiniteExtrusionParams->setAutoConstant(0, 
                    GpuProgramParameters::ACT_WORLDVIEWPROJ_MATRIX);
                mFiniteExtrusionParams->setAutoConstant(4, 
                    GpuProgramParameters::ACT_LIGHT_POSITION_OBJECT_SPACE);
                // Note extra parameter
                mFiniteExtrusionParams->setAutoConstant(5, 
                    GpuProgramParameters::ACT_SHADOW_EXTRUSION_DISTANCE);
            }
            matStencil->compile();
            // Nothing else, we don't use this like a 'real' pass anyway,
            // it's more of a placeholder
        }
        else
        {
            mShadowStencilPass = matStencil->getTechnique(0)->getPass(0);

            if (mDestRenderSystem->getCapabilities()->hasCapability(RSC_VERTEX_PROGRAM))
            {
                mFiniteExtrusionParams = mShadowStencilPass->getVertexProgramParameters();
            }
        }
    }




    if (!mShadowModulativePass)
    {

        MaterialPtr matModStencil = MaterialManager::getSingleton().getByName(
            "Ogre/StencilShadowModulationPass");
        if (matModStencil.isNull())
        {
            // Init
            matModStencil = MaterialManager::getSingleton().create(
                "Ogre/StencilShadowModulationPass",
                ResourceGroupManager::INTERNAL_RESOURCE_GROUP_NAME);
            mShadowModulativePass = matModStencil->getTechnique(0)->getPass(0);
            mShadowModulativePass->setSceneBlending(SBF_DEST_COLOUR, SBF_ZERO); 
            mShadowModulativePass->setLightingEnabled(false);
            mShadowModulativePass->setDepthWriteEnabled(false);
            mShadowModulativePass->setDepthCheckEnabled(false);
            TextureUnitState* t = mShadowModulativePass->createTextureUnitState();
            t->setColourOperationEx(LBX_MODULATE, LBS_MANUAL, LBS_CURRENT, 
                mShadowColour);
            mShadowModulativePass->setCullingMode(CULL_NONE);
        }
        else
        {
            mShadowModulativePass = matModStencil->getTechnique(0)->getPass(0);
        }
    }

    // Also init full screen quad while we're at it
    if (!mFullScreenQuad)
    {
        mFullScreenQuad = OGRE_NEW Rectangle2D();
        mFullScreenQuad->setCorners(-1,1,1,-1);
    }

    // Also init shadow caster material for texture shadows
    /************添加投影材质*******************/
    if (!mShadowCasterPlainBlackPass)
    {
        MaterialPtr matPlainBlack = MaterialManager::getSingleton().getByName(
            "Ogre/TextureShadowCaster");
        if (matPlainBlack.isNull())
        {
            matPlainBlack = MaterialManager::getSingleton().create(
                "Ogre/TextureShadowCaster",
                ResourceGroupManager::INTERNAL_RESOURCE_GROUP_NAME);
            mShadowCasterPlainBlackPass = matPlainBlack->getTechnique(0)->getPass(0);
            // Lighting has to be on, because we need shadow coloured objects
            // Note that because we can't predict vertex programs, we'll have to
            // bind light values to those, and so we bind White to ambient
            // reflectance, and we'll set the ambient colour to the shadow colour
            mShadowCasterPlainBlackPass->setAmbient(ColourValue::White);
            mShadowCasterPlainBlackPass->setDiffuse(ColourValue::Black);
            mShadowCasterPlainBlackPass->setSelfIllumination(ColourValue::Black);
            mShadowCasterPlainBlackPass->setSpecular(ColourValue::Black);
            // Override fog
            mShadowCasterPlainBlackPass->setFog(true, FOG_NONE);
            // no textures or anything else, we will bind vertex programs
            // every so often though
        }
        else
        {
            mShadowCasterPlainBlackPass = matPlainBlack->getTechnique(0)->getPass(0);
        }
    }
/***************接收阴影材质通道设置******************/
    if (!mShadowReceiverPass)
    {
        MaterialPtr matShadRec = MaterialManager::getSingleton().getByName(
            "Ogre/TextureShadowReceiver");
        if (matShadRec.isNull())            
        {
            matShadRec = MaterialManager::getSingleton().create(
                "Ogre/TextureShadowReceiver",
                ResourceGroupManager::INTERNAL_RESOURCE_GROUP_NAME);
            mShadowReceiverPass = matShadRec->getTechnique(0)->getPass(0);
            // Don't set lighting and blending modes here, depends on additive / modulative
            TextureUnitState* t = mShadowReceiverPass->createTextureUnitState();
            t->setTextureAddressingMode(TextureUnitState::TAM_CLAMP);
        }
        else
        {
            mShadowReceiverPass = matShadRec->getTechnique(0)->getPass(0);
        }
    }

    // Set up spot shadow fade texture (loaded from code data block)
    /*************点光源产生的衰减阴影材质***************/
    TexturePtr spotShadowFadeTex = 
        TextureManager::getSingleton().getByName("spot_shadow_fade.png");
    if (spotShadowFadeTex.isNull())
    {
        // Load the manual buffer into an image (don't destroy memory!
        DataStreamPtr stream(
            OGRE_NEW MemoryDataStream(SPOT_SHADOW_FADE_PNG, SPOT_SHADOW_FADE_PNG_SIZE, false));
        Image img;
        img.load(stream, "png");
        spotShadowFadeTex = 
            TextureManager::getSingleton().loadImage(
            "spot_shadow_fade.png", ResourceGroupManager::INTERNAL_RESOURCE_GROUP_NAME, 
            img, TEX_TYPE_2D);
    }

    mShadowMaterialInitDone = true;

本步骤之后,阴影材质、顶点及片段程序已经确定创建完成。之后就是计算了
首先灯光中做必要的计算。

mSceneMgr->_renderScene
->findLightsAffectingFrustum(camera);
在其中,有关阴影计算的有:灯光、相机距离。
然后在调用
prepareShadowTextures(camera, vp);进行其他准备

ensureShadowTexturesCreated(); //确保阴影材质已经创建,若没有则创建,创建纹理、纹理对应的相机、材质,并编译,保存


    // Set the illumination stage, prevents recursive calls,照明阶段设置,用于控制阴影产生。先将物体渲染到纹理,再渲染物体
    IlluminationRenderStage savedStage = mIlluminationStage;
    mIlluminationStage = IRS_RENDER_TO_TEXTURE;

    if (lightList == 0)
        lightList = &mLightsAffectingFrustum;

    try
    {

        // Determine far shadow distance
        Real shadowDist = mDefaultShadowFarDist;
        if (!shadowDist)
        {
            // need a shadow distance, make one up
            shadowDist = cam->getNearClipDistance() * 300;
        }
        Real shadowOffset = shadowDist * mShadowTextureOffset;
        // Precalculate fading info
        Real shadowEnd = shadowDist + shadowOffset;
        Real fadeStart = shadowEnd * mShadowTextureFadeStart;
        Real fadeEnd = shadowEnd * mShadowTextureFadeEnd;
        // Additive lighting should not use fogging, since it will overbrighten; use border clamp
        if (!isShadowTechniqueAdditive())
        {
            // set fogging to hide the shadow edge 
            mShadowReceiverPass->setFog(true, FOG_LINEAR, ColourValue::White, 
                0, fadeStart, fadeEnd);
        }
        else
        {
            // disable fogging explicitly
            mShadowReceiverPass->setFog(true, FOG_NONE);
        }

        // Iterate over the lights we've found, max out at the limit of light textures
        // Note that the light sorting must now place shadow casting lights at the
        // start of the light list, therefore we do not need to deal with potential
        // mismatches in the light<->shadow texture list any more
    //用灯光计算阴影
        LightList::const_iterator i, iend;
        ShadowTextureList::iterator si, siend;
        ShadowTextureCameraList::iterator ci;
        iend = lightList->end();
        siend = mShadowTextures.end();
        ci = mShadowTextureCameras.begin();
        mShadowTextureIndexLightList.clear();
        size_t shadowTextureIndex = 0;
        for (i = lightList->begin(), si = mShadowTextures.begin();
            i != iend && si != siend; ++i)
        {
            Light* light = *i;

            // skip light if shadows are disabled
            if (!light->getCastShadows())
                continue;

            if (mShadowTextureCurrentCasterLightList.empty())
                mShadowTextureCurrentCasterLightList.push_back(light);
            else
                mShadowTextureCurrentCasterLightList[0] = light;


            // texture iteration per light.
            size_t textureCountPerLight = mShadowTextureCountPerType[light->getType()];
            for (size_t j = 0; j < textureCountPerLight && si != siend; ++j)
            {
                TexturePtr &shadowTex = *si;
                RenderTarget *shadowRTT = shadowTex->getBuffer()->getRenderTarget();
                Viewport *shadowView = shadowRTT->getViewport(0);
                Camera *texCam = *ci;
                // rebind camera, incase another SM in use which has switched to its cam
                shadowView->setCamera(texCam);

                // Associate main view camera as LOD camera
                //关联主相机为视相机的lod相机
                texCam->setLodCamera(cam);
                // set base
                //设置相机的位置和方向(点光源除外)
                if (light->getType() != Light::LT_POINT)
                    texCam->setDirection(light->getDerivedDirection());
                if (light->getType() != Light::LT_DIRECTIONAL)
                    texCam->setPosition(light->getDerivedPosition());

                // Use the material scheme of the main viewport 
                // This is required to pick up the correct shadow_caster_material and similar properties.
                shadowView->setMaterialScheme(vp->getMaterialScheme());

                // update shadow cam - light mapping
                ShadowCamLightMapping::iterator camLightIt = mShadowCamLightMapping.find( texCam );
                assert(camLightIt != mShadowCamLightMapping.end());
                camLightIt->second = light;

                if (light->getCustomShadowCameraSetup().isNull())
                    mDefaultShadowCameraSetup->getShadowCamera(this, cam, vp, light, texCam, j);//获取,设置阴影相机,位置、旋转、远近、FOV、投射方式(方向灯光的相机设置为正交,其他设置为透射)
                else
                    light->getCustomShadowCameraSetup()->getShadowCamera(this, cam, vp, light, texCam, j);

                // Setup background colour
                shadowView->setBackgroundColour(ColourValue::White);

                // Fire shadow caster update, callee can alter camera settings
                fireShadowTexturesPreCaster(light, texCam, j);

                // Update target ,更新阴影材质
                shadowRTT->update(); 

                ++si; // next shadow texture
                ++ci; // next camera
            }

            // set the first shadow texture index for this light.
            mShadowTextureIndexLightList.push_back(shadowTextureIndex);
            shadowTextureIndex += textureCountPerLight;
        }
    }
    catch (Exception& e) 
    {
        // we must reset the illumination stage if an exception occurs
        mIlluminationStage = savedStage;
        throw e;
    }
    // Set the illumination stage, prevents recursive calls
    mIlluminationStage = savedStage;

    fireShadowTexturesUpdated(
        std::min(lightList->size(), mShadowTextures.size()));

    ShadowTextureManager::getSingleton().clearUnused();

下面是创建阴影纹理的过程(ensureShadowTexturesCreated())
,创建纹理、创建纹理对应的渲染相机、创建材质。

if (mShadowTextureConfigDirty)
    {
        destroyShadowTextures();
        //获取阴影材质们
        ShadowTextureManager::getSingleton().getShadowTextures(
            mShadowTextureConfigList, mShadowTextures);

        // clear shadow cam - light mapping
        mShadowCamLightMapping.clear();

        //Used to get the depth buffer ID setting for each RTT
        size_t __i = 0;

        // Recreate shadow textures
        //重新创建阴影材质,根据相机的属性等创建新的
        for (ShadowTextureList::iterator i = mShadowTextures.begin(); 
            i != mShadowTextures.end(); ++i, ++__i) 
        {
            const TexturePtr& shadowTex = *i;

            // Camera names are local to SM 
            String camName = shadowTex->getName() + "Cam";
            // Material names are global to SM, make specific
            String matName = shadowTex->getName() + "Mat" + getName();

            RenderTexture *shadowRTT = shadowTex->getBuffer()->getRenderTarget();

            //Set appropriate depth buffer
            shadowRTT->setDepthBufferPool( mShadowTextureConfigList[__i].depthBufferPoolId );

            // Create camera for this texture, but note that we have to rebind
            // in prepareShadowTextures to coexist with multiple SMs
            //渲染到纹理的形式,先创建相机,将相机所见内容渲染到动态的阴影纹理上
            Camera* cam = createCamera(camName);
            cam->setAspectRatio((Real)shadowTex->getWidth() / (Real)shadowTex->getHeight());
            mShadowTextureCameras.push_back(cam);

            // Create a viewport, if not there already
            if (shadowRTT->getNumViewports() == 0)
            {
                // Note camera assignment is transient when multiple SMs
                Viewport *v = shadowRTT->addViewport(cam);
                v->setClearEveryFrame(true);
                // remove overlays
                v->setOverlaysEnabled(false);
            }

            // Don't update automatically - we'll do it when required   ,设置为非自动更新
            shadowRTT->setAutoUpdated(false);

            // Also create corresponding Material used for rendering this shadow,创建材质
            MaterialPtr mat = MaterialManager::getSingleton().getByName(matName);
            if (mat.isNull())
            {
                mat = MaterialManager::getSingleton().create(
                    matName, ResourceGroupManager::INTERNAL_RESOURCE_GROUP_NAME);
            }
            Pass* p = mat->getTechnique(0)->getPass(0);
            if (p->getNumTextureUnitStates() != 1 ||
                p->getTextureUnitState(0)->_getTexturePtr(0) != shadowTex)
            {
                mat->getTechnique(0)->getPass(0)->removeAllTextureUnitStates();
                // create texture unit referring to render target texture
                TextureUnitState* texUnit = 
                    p->createTextureUnitState(shadowTex->getName());
                // set projective based on camera,设置基于相机的投射纹理
                texUnit->setProjectiveTexturing(!p->hasVertexProgram(), cam);
                // clamp to border colour
                texUnit->setTextureAddressingMode(TextureUnitState::TAM_BORDER);
                texUnit->setTextureBorderColour(ColourValue::White);
                mat->touch(); //编译

            }

            // insert dummy camera-light combination
            mShadowCamLightMapping[cam] = 0;

            // Get null shadow texture
            if (mShadowTextureConfigList.empty())
            {
                mNullShadowTexture.setNull();
            }
            else
            {
                mNullShadowTexture = 
                    ShadowTextureManager::getSingleton().getNullShadowTexture(
                        mShadowTextureConfigList[0].format);
            }


        }
        mShadowTextureConfigDirty = false;
    }

至此,需要阴影所需的计算已准备完毕。已准备的有:
1、投射投影的材质、纹理
2、接收投影的材质、纹理
3、动态阴影纹理,包含其相机设置(根据灯光属性设置的方位、远近、投影模式、颜色)
,在准备的基础上,阴影纹理程序已经更新。

下面的步骤是,在每一帧中将开了投影功能的物体投影到“画布”阴影纹理上。即将计算的出的参数值,设置到vertex、fragment 程序中

_renderQueueGroupObjects->
renderAdditiveStencilShadowedQueueGroupObjects 或
renderModulativeStencilShadowedQueueGroupObjects 或
renderTextureShadowCasterQueueGroupObjects 或
renderAdditiveTextureShadowedQueueGroupObjects 或
renderModulativeTextureShadowedQueueGroupObjects 或
renderBasicQueueGroupObjects
取决于不同的投影策略

以renderAdditiveStencilShadowedQueueGroupObjects 为例,进行跟踪

->renderShadowVolumesToStencil
->renderShadowVolumeObjects
->renderSingleObject (单个物体进行program中参数设置,rend)

 类似资料: