|-- GOT-10k/
|-- train/
| |-- GOT-10k_Train_000001/
| | ......
| |-- GOT-10k_Train_009335/
| |-- list.txt
|-- val/
| |-- GOT-10k_Val_000001/
| | ......
| |-- GOT-10k_Val_000180/
| |-- list.txt
|-- test/
| |-- GOT-10k_Test_000001/
| | ......
| |-- GOT-10k_Test_000180/
| |-- list.txt
Each sequence folder contains 4 annotation files and 1 meta file. A brief description of these files follows (let N denotes sequence length):
Values 0~8 in file cover.label correspond to ranges of object visible ratios: 0%, (0%, 15%], (15%~30%], (30%, 45%], (45%, 60%], (60%, 75%], (75%, 90%], (90%, 100%) and 100% respectively.
# -*- coding: utf-8 -*-
import shutil
import os
dst = r'C:\Users\lpf\Desktop\dataset\Got10k\train'
dst1 = r'd:/Learning_Data/BasicCode/move_file/c'
path = []
def Test1(rootDir, path):
list_dirs = os.walk(rootDir)
for root, dirs, files in list_dirs:
for d in dirs:
if d[-3]=='_':
# if d[-1]=='a':
s=os.path.join(root, d)
path.append(s)
# shutil.move(d,dst1)
# for f in files:
# print (os.path.join(root, f))
Test1(r"C:\Users\lpf\Desktop\dataset\Got10k", path)
def Test2(rootDir, path):
list_dirs = os.walk(rootDir)
for root, dirs, files in list_dirs:
for d in dirs:
# if d[-3]=='_':
# # if d[-1]=='a':
s=os.path.join(root, d)
path.append(s)
# Test1(r'd:\Learning_Data\BasicCode\move_file')
# print(path[0])
# shutil.move(path[0],dst)
images_path = []
for images in path:
Test2(images, images_path)
# break
print(images_path[0])
print(len(images_path))
print(images_path[-1])
count = 0
# images_path
for i in images_path:
shutil.move(i,dst)
count += 1
if count % 100 == 0:
print("已完成移动{}个文件......".format(count))
print("finish")
from os.path import join, isdir, exists
from os import listdir, mkdir, makedirs
import cv2
import numpy as np
import glob
from concurrent import futures
import sys
import time
got10k_base_path = '/data/share/GOT10K'
sub_sets = sorted({'train', 'val'})
# Print iterations progress (thanks StackOverflow)
def printProgress(iteration, total, prefix='', suffix='', decimals=1, barLength=100):
"""
Call in a loop to create terminal progress bar
@params:
iteration - Required : current iteration (Int)
total - Required : total iterations (Int)
prefix - Optional : prefix string (Str)
suffix - Optional : suffix string (Str)
decimals - Optional : positive number of decimals in percent complete (Int)
barLength - Optional : character length of bar (Int)
"""
formatStr = "{0:." + str(decimals) + "f}"
percents = formatStr.format(100 * (iteration / float(total)))
filledLength = int(round(barLength * iteration / float(total)))
bar = '' * filledLength + '-' * (barLength - filledLength)
sys.stdout.write('\r%s |%s| %s%s %s' % (prefix, bar, percents, '%', suffix)),
if iteration == total:
sys.stdout.write('\x1b[2K\r')
sys.stdout.flush()
def crop_hwc(image, bbox, out_sz, padding=(0, 0, 0)):
a = (out_sz-1) / (bbox[2]-bbox[0])
b = (out_sz-1) / (bbox[3]-bbox[1])
c = -a * bbox[0]
d = -b * bbox[1]
mapping = np.array([[a, 0, c],
[0, b, d]]).astype(np.float)
crop = cv2.warpAffine(image, mapping, (out_sz, out_sz), borderMode=cv2.BORDER_CONSTANT, borderValue=padding)
return crop
def pos_s_2_bbox(pos, s):
return [pos[0]-s/2, pos[1]-s/2, pos[0]+s/2, pos[1]+s/2]
def crop_like_SiamFC(image, bbox, context_amount=0.5, exemplar_size=127, instanc_size=255, padding=(0, 0, 0)):
target_pos = [(bbox[2]+bbox[0])/2., (bbox[3]+bbox[1])/2.]
target_size = [bbox[2]-bbox[0], bbox[3]-bbox[1]] # width, height
wc_z = target_size[1] + context_amount * sum(target_size)
hc_z = target_size[0] + context_amount * sum(target_size)
s_z = np.sqrt(wc_z * hc_z)
scale_z = exemplar_size / s_z
d_search = (instanc_size - exemplar_size) / 2
pad = d_search / scale_z
s_x = s_z + 2 * pad
z = crop_hwc(image, pos_s_2_bbox(target_pos, s_z), exemplar_size, padding)
x = crop_hwc(image, pos_s_2_bbox(target_pos, s_x), instanc_size, padding)
return z, x
def crop_video(sub_set, video, crop_path, instanc_size):
video_crop_base_path = join(crop_path, sub_set, video)
if not exists(video_crop_base_path): makedirs(video_crop_base_path)
sub_set_base_path = join(got10k_base_path, sub_set)
video_base_path = join(sub_set_base_path, video)
gts_path = join(video_base_path, 'groundtruth.txt')
gts = np.loadtxt(open(gts_path, "rb"), delimiter=',')
jpgs = sorted(glob.glob(join(video_base_path, '*.jpg')))
if not jpgs:
print('no jpg files, try png files')
jpgs = sorted(glob.glob(join(video_base_path, '*.png')))
if not jpgs:
print('no jpg and png files, check data please')
for idx, img_path in enumerate(jpgs):
im = cv2.imread(img_path)
avg_chans = np.mean(im, axis=(0, 1))
gt = gts[idx]
bbox = [int(g) for g in gt] # (x,y,w,h)
bbox = [bbox[0], bbox[1], bbox[0]+bbox[2], bbox[1]+bbox[3]] # (xmin, ymin, xmax, ymax)
z, x = crop_like_SiamFC(im, bbox, instanc_size=instanc_size, padding=avg_chans)
cv2.imwrite(join(video_crop_base_path, '{:06d}.{:02d}.z.jpg'.format(int(idx), 0)), z)
cv2.imwrite(join(video_crop_base_path, '{:06d}.{:02d}.x.jpg'.format(int(idx), 0)), x)
def main(instanc_size=511, num_threads=24):
crop_path = '/data2/got10k/crop{:d}'.format(instanc_size)
if not exists(crop_path): makedirs(crop_path)
for sub_set in sub_sets:
sub_set_base_path = join(got10k_base_path, sub_set)
videos = sorted(listdir(sub_set_base_path))
n_videos = len(videos)
with futures.ProcessPoolExecutor(max_workers=num_threads) as executor:
fs = [executor.submit(crop_video, sub_set, video, crop_path, instanc_size) for video in videos]
for i, f in enumerate(futures.as_completed(fs)):
# Write progress to error so that it can be seen
printProgress(i, n_videos, prefix=sub_set, suffix='Done ', barLength=40)
if __name__ == '__main__':
since = time.time()
main(int(sys.argv[1]), int(sys.argv[2]))
time_elapsed = time.time() - since
print('Total complete in {:.0f}m {:.0f}s'.format(
time_elapsed // 60, time_elapsed % 60))
# -*- coding:utf-8 -*-
# ! ./usr/bin/env python
# __author__ = 'zzp'
'''
读取got10k的train,val下面的文件夹
video+ground Truth
将图像的size和bbox以及路径等信息层层嵌入到一个复合字典中
将字典保存为json文件
'''
import cv2
import json
import glob
import numpy as np
from os.path import join
from os import listdir
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--dir',type=str, default='/data/share/GOT10K', help='your vid data dir')
args = parser.parse_args()
got10k_base_path = args.dir
sub_sets = sorted({'train', 'val'})
got10k = []
# 遍历got10k的train和val文件夹
for sub_set in sub_sets:
sub_set_base_path = join(got10k_base_path, sub_set)
# ./got10k/train/0001video-9553?
videos = sorted(listdir(sub_set_base_path))
s = []
# 一个video表示一个文件夹,即一段100帧左右的视频
for vi, video in enumerate(videos):
print('subset: {} video id: {:04d} / {:04d}'.format(sub_set, vi, len(videos)))
v = dict()
# ./got10k/train/001video
v['base_path'] = join(sub_set, video)
v['frame'] = []
video_base_path = join(sub_set_base_path, video)
gts_path = join(video_base_path, 'groundtruth.txt')
# gts_file = open(gts_path, 'r')
# gts = gts_file.readlines()
gts = np.loadtxt(open(gts_path, "rb"), delimiter=',')
# get image size
im_path = join(video_base_path, '00000001.jpg')
im = cv2.imread(im_path)
size = im.shape # height, width
frame_sz = [size[1], size[0]] # width,height
# get all im name
jpgs = sorted(glob.glob(join(video_base_path, '*.jpg')))
f = dict()
for idx, img_path in enumerate(jpgs):
f['frame_sz'] = frame_sz
f['img_path'] = img_path.split('/')[-1]
gt = gts[idx]
bbox = [int(g) for g in gt] # (x,y,w,h)
f['bbox'] = bbox
v['frame'].append(f.copy())
s.append(v)
got10k.append(s)
print('save json (raw got10k info), please wait 1 min~')
json.dump(got10k, open('got10k.json', 'w'), indent=4, sort_keys=True)
print('got10k.json has been saved in ./')