Tensorflow是Google提供的一种机器学习框架。它是一个开放源代码框架,与Python结合使用以实现算法,深度学习应用程序等等。它用于研究和生产目的。它具有优化技术,可帮助快速执行复杂的数学运算。这是因为它使用了NumPy和多维数组。这些多维数组也称为“张量”。该框架支持使用深度神经网络。
可以使用下面的代码行在Windows上安装'tensorflow'软件包-
pip install tensorflow
Tensor是TensorFlow中使用的数据结构。它有助于连接流程图中的边缘。该流程图称为“数据流程图”。张量不过是多维数组或列表。
我们将使用Illiad的数据集,其中包含来自William Cowper,Edward(德比伯爵)和Samuel Butler的三本翻译作品的文本数据。当给出单行文本时,训练模型以识别翻译器。使用的文本文件已经过预处理。这包括删除文档的页眉和页脚,行号和章节标题。
我们正在使用Google合作实验室来运行以下代码。Google Colab或Colaboratory可以帮助通过浏览器运行Python代码,并且需要零配置和对GPU(图形处理单元)的免费访问。合作已建立在Jupyter Notebook的基础上。
以下是代码片段-
print("Combine the labelled dataset and reshuffle it") BUFFER_SIZE = 50000 BATCH_SIZE = 64 VALIDATION_SIZE = 5000 all_labeled_data = labeled_data_sets[0] for labeled_dataset in labeled_data_sets[1:]: all_labeled_data = all_labeled_data.concatenate(labeled_dataset) all_labeled_data = all_labeled_data.shuffle( BUFFER_SIZE, reshuffle_each_iteration=False) print("Displaying a few samples of input data") for text, label in all_labeled_data.take(8): print("句子是: ", text.numpy()) print("标签是:", label.numpy())
代码信用-https://www.tensorflow.org/tutorials/load_data/text
输出结果
Combine the labelled dataset and reshuffle it Displaying a few samples of input data 句子是: b'But I have now both tasted food, and given' 标签是: 0 句子是: b'All these shall now be thine: but if the Gods' 标签是: 1 句子是: b'Their spiry summits waved. There, unperceived' 标签是: 0 句子是: b'"I pray you, would you show your love, dear friends,' 标签是: 1 句子是: b'Entering beneath the clavicle the point' 标签是: 0 句子是: b'But grief, his father lost, awaits him now,' 标签是: 1 句子是: b'in the fore-arm where the sinews of the elbow are united, whereon he' 标签是: 2 句子是: b'For, as I think, I have already chased' 标签是: 0
在对数据进行预处理之后,来自数据集的一些样本将显示在控制台上。
数据未分组,这意味着“ all_labeled_data”中的每个条目都映射到一个数据点。
目前为止,我们只是使用了存放在内存中的数据集,但深度学习系统经常需要在大数据集上训练,而内存放不下大数据集。其它的深度学习库通过对大数据集做预处理,绕过了内存限制,但 TensorFlow 通过 Data API,使一切都容易了:只需要创建一个数据集对象,告诉它去哪里拿数据,以及如何做转换就行。TensorFlow 负责所有的实现细节,比如多线程、队列、批次和预提取。另外,Data API 和tf
问题内容: 我正在使用Keras与Tensorflow作为后端。 我正在尝试在主流程中保存模型,然后在另一个流程中加载/运行(即调用)。 我目前正在尝试从文档中使用天真的方法来保存/加载模型:https : //keras.io/getting-started/faq/#how-can-i-save-a- keras-model 。 所以基本上: 在主要过程中 在子进程中 在子进程中 但是,它只是
将 vue-loader 与 webpack 一起使用的好处之一是能够直接在你的 Vue 组件文件中预处理你的 HTML/CSS/JS,而无需其他工作。请查询 这里 相关的详细信息。 使用案例 假设我们需要使用 Sass/SCSS 来预处理我们的 CSS。首先,我们需要安装正确的 webpack 加载器来处理这种语法。 安装 sass-loader npm install --save-dev s
本文向大家介绍python数据预处理 :数据共线性处理详解,包括了python数据预处理 :数据共线性处理详解的使用技巧和注意事项,需要的朋友参考一下 何为共线性: 共线性问题指的是输入的自变量之间存在较高的线性相关度。共线性问题会导致回归模型的稳定性和准确性大大降低,另外,过多无关的维度计算也很浪费时间 共线性产生原因: 变量出现共线性的原因: 数据样本不够,导致共线性存在偶然性,这其实反映了缺
Data Preparation You must pre-process your raw data before you model your problem. The specific preparation may depend on the data that you have available and the machine learning algorithms you want
在输入的JSON数据中,v的值越高,粒子越亮,并且它们从出发国家到目的国家的运行越快。 (请查阅Michael Chang的文章来 了解他是如何提出这个想法的)。Gio.js库会自动缩放输入数据的范围以便于更好的数据可视化。作为开发人员,您还可以定义自己的预处理数据的方式。