当前位置: 首页 > 编程笔记 >

如何使用Tensorflow和Python整理预处理的数据?

蔡明贤
2023-03-14
本文向大家介绍如何使用Tensorflow和Python整理预处理的数据?,包括了如何使用Tensorflow和Python整理预处理的数据?的使用技巧和注意事项,需要的朋友参考一下

Tensorflow是Google提供的一种机器学习框架。它是一个开放源代码框架,与Python结合使用以实现算法,深度学习应用程序等等。它用于研究和生产目的。它具有优化技术,可帮助快速执行复杂的数学运算。这是因为它使用了NumPy和多维数组。这些多维数组也称为“张量”。该框架支持使用深度神经网络。

可以使用下面的代码行在Windows上安装'tensorflow'软件包-

pip install tensorflow

Tensor是TensorFlow中使用的数据结构。它有助于连接流程图中的边缘。该流程图称为“数据流程图”。张量不过是多维数组或列表。

我们将使用Illiad的数据集,其中包含来自William Cowper,Edward(德比伯爵)和Samuel Butler的三本翻译作品的文本数据。当给出单行文本时,训练模型以识别翻译器。使用的文本文件已经过预处理。这包括删除文档的页眉和页脚,行号和章节标题。

我们正在使用Google合作实验室来运行以下代码。Google Colab或Colaboratory可以帮助通过浏览器运行Python代码,并且需要零配置和对GPU(图形处理单元)的免费访问。合作已建立在Jupyter Notebook的基础上。

示例

以下是代码片段-

print("Combine the labelled dataset and reshuffle it")
BUFFER_SIZE = 50000
BATCH_SIZE = 64
VALIDATION_SIZE = 5000
all_labeled_data = labeled_data_sets[0]
for labeled_dataset in labeled_data_sets[1:]:
   all_labeled_data = all_labeled_data.concatenate(labeled_dataset)
all_labeled_data = all_labeled_data.shuffle(
   BUFFER_SIZE, reshuffle_each_iteration=False)
print("Displaying a few samples of input data")
for text, label in all_labeled_data.take(8):
   print("句子是: ", text.numpy())
   print("标签是:", label.numpy())

代码信用-https://www.tensorflow.org/tutorials/load_data/text

输出结果

Combine the labelled dataset and reshuffle it
Displaying a few samples of input data
句子是: b'But I have now both tasted food, and given'
标签是: 0
句子是: b'All these shall now be thine: but if the Gods'
标签是: 1
句子是: b'Their spiry summits waved. There, unperceived'
标签是: 0
句子是: b'"I pray you, would you show your love, dear friends,'
标签是: 1
句子是: b'Entering beneath the clavicle the point'
标签是: 0
句子是: b'But grief, his father lost, awaits him now,'
标签是: 1
句子是: b'in the fore-arm where the sinews of the elbow are united, whereon he'
标签是: 2
句子是: b'For, as I think, I have already chased'
标签是: 0

解释

  • 在对数据进行预处理之后,来自数据集的一些样本将显示在控制台上。

  • 数据未分组,这意味着“ all_labeled_data”中的每个条目都映射到一个数据点。

 类似资料:
  • 目前为止,我们只是使用了存放在内存中的数据集,但深度学习系统经常需要在大数据集上训练,而内存放不下大数据集。其它的深度学习库通过对大数据集做预处理,绕过了内存限制,但 TensorFlow 通过 Data API,使一切都容易了:只需要创建一个数据集对象,告诉它去哪里拿数据,以及如何做转换就行。TensorFlow 负责所有的实现细节,比如多线程、队列、批次和预提取。另外,Data API 和tf

  • 问题内容: 我正在使用Keras与Tensorflow作为后端。 我正在尝试在主流程中保存模型,然后在另一个流程中加载/运行(即调用)。 我目前正在尝试从文档中使用天真的方法来保存/加载模型:https : //keras.io/getting-started/faq/#how-can-i-save-a- keras-model 。 所以基本上: 在主要过程中 在子进程中 在子进程中 但是,它只是

  • 将 vue-loader 与 webpack 一起使用的好处之一是能够直接在你的 Vue 组件文件中预处理你的 HTML/CSS/JS,而无需其他工作。请查询 这里 相关的详细信息。 使用案例 假设我们需要使用 Sass/SCSS 来预处理我们的 CSS。首先,我们需要安装正确的 webpack 加载器来处理这种语法。 安装 sass-loader npm install --save-dev s

  • 本文向大家介绍python数据预处理 :数据共线性处理详解,包括了python数据预处理 :数据共线性处理详解的使用技巧和注意事项,需要的朋友参考一下 何为共线性: 共线性问题指的是输入的自变量之间存在较高的线性相关度。共线性问题会导致回归模型的稳定性和准确性大大降低,另外,过多无关的维度计算也很浪费时间 共线性产生原因: 变量出现共线性的原因: 数据样本不够,导致共线性存在偶然性,这其实反映了缺

  • Data Preparation You must pre-process your raw data before you model your problem. The specific preparation may depend on the data that you have available and the machine learning algorithms you want

  • 在输入的JSON数据中,v的值越高,粒子越亮,并且它们从出发国家到目的国家的运行越快。 (请查阅Michael Chang的文章来 了解他是如何提出这个想法的)。Gio.js库会自动缩放输入数据的范围以便于更好的数据可视化。作为开发人员,您还可以定义自己的预处理数据的方式。