本文实例为大家分享了Python数据预处理的具体代码,供大家参考,具体内容如下
1.导入标准库
import numpy as np import matplotlib.pyplot as plt import pandas as pd
2.导入数据集
dataset = pd.read_csv('data (1).csv') # read_csv:读取csv文件 #创建一个包含所有自变量的矩阵,及因变量的向量 #iloc表示选取数据集的某行某列;逗号之前的表示行,之后的表示列;冒号表示选取全部,没有冒号,则表示选取第几列;values表示选取数据集里的数据。 X = dataset.iloc[:, :-1].values # 选取数据,不选取最后一列。 y = dataset.iloc[:, 3].values # 选取数据,选取每行的第3列数据
3.缺失数据
from sklearn.preprocessing import Imputer #进行数据挖掘及数据分析的标准库,Imputer缺失数据的处理 #Imputer中的参数:missing_values 缺失数据,定义怎样辨认确实数据,默认值:nan ;strategy 策略,补缺值方式 : mean-平均值 , median-中值 , most_frequent-出现次数最多的数 ; axis =0取列 =1取行 imputer = Imputer(missing_values = 'NaN', strategy = 'mean', axis = 0) imputer = imputer.fit(X[:, 1:3])#拟合fit X[:, 1:3] = imputer.transform(X[:, 1:3])
4.分类数据
from sklearn.preprocessing import LabelEncoder,OneHotEncoder labelencoder_X=LabelEncoder() X[:,0]=labelencoder_X.fit_transform(X[:,0]) onehotencoder=OneHotEncoder(categorical_features=[0]) X=onehotencoder.fit_transform(X).toarray() #因为Purchased是因变量,Python里面的函数可以将其识别为分类数据,所以只需要LabelEncoder转换为分类数字 labelencoder_y=LabelEncoder() y=labelencoder_y.fit_transform(y)
5.将数据集分为训练集和测试集
from sklearn.model_selection import train_test_split X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.2,random_state=0) #X_train(训练集的字变量),X_test(测试集的字变量),y_train(训练集的因变量),y_test(训练集的因变量) #训练集所占的比重0.2~0.25,某些情况也可分配1/3的数据给训练集;train_size训练集所占的比重 #random_state决定随机数生成的方式,随机的将数据分配给训练集和测试集;random_state相同时会得到相同的训练集和测试集
6.特征缩放
#特征缩放(两种方式:一:Standardisation(标准化);二:Normalisation(正常化)) from sklearn.preprocessing import StandardScaler sc_X=StandardScaler() X_train=sc_X.fit_transform(X_train)#拟合,对X_train进行缩放 X_test=sc_X.transform(X_test)#sc_X已经被拟合好了,所以对X_test进行缩放时,直接转换X_test
7.数据预处理模板
(1)导入标准库
(2)导入数据集
(3)缺失和分类很少遇到
(4)将数据集分割为训练集和测试集
(5)特征缩放,大部分情况下不需要,但是某些情况需要特征缩放
以上所述是小编给大家介绍的Python数据预处理详解整合,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对小牛知识库网站的支持!
本文向大家介绍python数据预处理 :数据共线性处理详解,包括了python数据预处理 :数据共线性处理详解的使用技巧和注意事项,需要的朋友参考一下 何为共线性: 共线性问题指的是输入的自变量之间存在较高的线性相关度。共线性问题会导致回归模型的稳定性和准确性大大降低,另外,过多无关的维度计算也很浪费时间 共线性产生原因: 变量出现共线性的原因: 数据样本不够,导致共线性存在偶然性,这其实反映了缺
Data Preparation You must pre-process your raw data before you model your problem. The specific preparation may depend on the data that you have available and the machine learning algorithms you want
在输入的JSON数据中,v的值越高,粒子越亮,并且它们从出发国家到目的国家的运行越快。 (请查阅Michael Chang的文章来 了解他是如何提出这个想法的)。Gio.js库会自动缩放输入数据的范围以便于更好的数据可视化。作为开发人员,您还可以定义自己的预处理数据的方式。
本文向大家介绍python处理csv数据动态显示曲线实例代码,包括了python处理csv数据动态显示曲线实例代码的使用技巧和注意事项,需要的朋友参考一下 本文研究的主要是python处理csv数据动态显示曲线,分享了实现代码,具体如下。 代码: 总结 以上就是本文关于python处理csv数据动态显示曲线实例代码的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站其他相关专题,如有不足之
本文向大家介绍ASP 处理JSON数据的实现代码,包括了ASP 处理JSON数据的实现代码的使用技巧和注意事项,需要的朋友参考一下 ASP也能处理JSON数据?呵呵,刚才在Pjblog论坛上看到一个兄弟写的文章,没有测试,不过理论上一定是可以的~ 太晚了,不测试了。 以前处理JSON太麻烦了,输出还好说,循环一下就可以了,解析真的很头疼。所以遇到 这种问题API问题,一般都是XML处理,不太喜欢,
校验者: @if only 翻译者: @Trembleguy sklearn.preprocessing 包提供了几个常见的实用功能和变换器类型,用来将原始特征向量更改为更适合机器学习模型的形式。 一般来说,机器学习算法受益于数据集的标准化。如果数据集中存在一些离群值,那么稳定的缩放或转换更合适。不同缩放、转换以及归一在一个包含边缘离群值的数据集中的表现在 Compare the effect o