深度学习框架提供的 “Model Zoo” ,有大量的在大数据集上预训练的可供下载的模型:
Caffe: https://github.com/BVLC/caffe/wiki/Model-Zoo
TensorFlow: https://github.com/tensorflow/models
PyTorch: https://github.com/pytorch/vision
torch是什么 torch就是诸多深度学习框架中的一种 业界有几大深度学习框架:1)tensorflow,谷歌主推,时下最火,小型试验和大型计算都可以,基于python,缺点是上手相对较难,速度一般;2)torch,facebook主推,用于小型试验,开源应用较多,基于lua,上手较快,网上文档较全,缺点是lua语言相对冷门;3)mxnet,大公司主推,主要用于大型计算,基于python和R,缺
我太菜了,C++需要恶补才行,面试完基本上就知道自己寄,面试官特别好给我说了很多,也让我充分认识到自己的不足 如果是项目的话,会问你项目背景以及项目最终的实现结果等等 如果是自己学习的项目的话,会问你对这个项目的学习心得 最后问对C++对掌握程度 实现vector
本文向大家介绍用过哪些移动端深度学习框架?相关面试题,主要包含被问及用过哪些移动端深度学习框架?时的应答技巧和注意事项,需要的朋友参考一下 参考回答: 开源的有:小米的MACE,骁龙的SNPE,腾讯的FeatherCNN和ncnn,百度的mobile-deep-learning(MDL);caffe、tensorflow lite都有移动端,只是可能没有上面的框架效率高。据传还有支付宝的xNN,商
9.21 一面 9.27 二面 9.30 三面(加面),希望后续有hr面或者oc吧 总结而言,讯飞非常喜欢问基础知识,从算法到操作系统到数学建模,问的项目并不多,所以以后大家要是面的话一定多准备八股 深度学习框架和平台方向相当于是算法和工程的结合,所以算法原理,部署,加速,操作系统,python底层都问到了。跟面试官交流又学习到很多知识,遗憾的是面的时候很多没有准备到,希望好运吧! 一面面经:和实
8.22 一面 自我介绍 项目介绍 问我有没有读过pytorch源码(懵逼) GPU内存模型 不同池化操作反向传播之后会有什么区别 分布式训练有什么了解? 量化相关 QAT和PTQ的区别 C++ 容器相关底层实现 手撕cuda 向量和
自我介绍 问项目(主要是谈项目的细节) cpu的体系结构 与内存之间的交互 手写环形缓冲区的逻辑 包括读缓冲区 写缓冲区的操作(c++) 手写自旋锁的逻辑 (c++) 算法:排序链表 要求使用归并排序
主要内容 课程列表 专项课程学习 辅助课程 论文专区 课程列表 课程 机构 参考书 Notes等其他资料 卷积神经网络视觉识别 Stanford 暂无 链接 神经网络 Tweet 暂无 链接 深度学习用于自然语言处理 Stanford 暂无 链接 自然语言处理 Speech and Language Processing 链接 专项课程学习 下述的课程都是公认的最好的在线学习资料,侧重点不同,但推
Google Cloud Platform 推出了一个 Learn TensorFlow and deep learning, without a Ph.D. 的教程,介绍了如何基于 Tensorflow 实现 CNN 和 RNN,链接在 这里。 Youtube Slide1 Slide2 Sample Code