�� Travel around the world as we explore Machine Learning by means of world cultures��
Azure Cloud Advocates at Microsoft are pleased to offer a 12-week, 24-lesson (plus one!) curriculum all about Machine Learning. In this curriculum, you will learn about what is sometimes called classic machine learning, using primarily Scikit-learn as a library and avoiding deep learning, which is covered in our forthcoming 'AI for Beginners' curriculum. Pair these lessons with our 'Data Science for Beginners' curriculum, as well!
Travel with us around the world as we apply these classic techniques to data from many areas of the world. Each lesson includes pre- and post-lesson quizzes, written instructions to complete the lesson, a solution, an assignment and more. Our project-based pedagogy allows you to learn while building, a proven way for new skills to 'stick'.
Students, to use this curriculum, fork the entire repo to your own GitHub account and complete the exercises on your own or with a group:
/solution
folders in each project-oriented lesson.For further study, we recommend following these Microsoft Learn modules and learning paths.
Teachers, we have included some suggestions on how to use this curriculum.
�� Click the image above for a video about the project and the folks who created it!
We have chosen two pedagogical tenets while building this curriculum: ensuring that it is hands-on project-based and that it includes frequent quizzes. In addition, this curriculum has a common theme to give it cohesion.
By ensuring that the content aligns with projects, the process is made more engaging for students and retention of concepts will be augmented. In addition, a low-stakes quiz before a class sets the intention of the student towards learning a topic, while a second quiz after class ensures further retention. This curriculum was designed to be flexible and fun and can be taken in whole or in part. The projects start small and become increasingly complex by the end of the 12 week cycle. This curriculum also includes a postscript on real-world applications of ML, which can be used as extra credit or as a basis for discussion.
Find our Code of Conduct, Contributing, and Translation guidelines. We welcome your constructive feedback!
A note about languages: These lessons are primarily written in Python, but many are also available in R. To complete an R lesson, go to the
/solution
folder and look for R lessons. They include an .rmd extension that represents an R Markdown file which can be simply defined as an embedding ofcode chunks
(of R or other languages) and aYAML header
(that guides how to format outputs such as PDF) in aMarkdown document
. As such, it serves as an exemplary authoring framework for data science since it allows you to combine your code, its output and your thoughts by allowing you to write them down in Markdown. Moreover, R Markdown documents can be rendered to output formats such as PDF, HTML, or Word.
A note about quizzes: All quizzes are contained in this app, for 50 total quizzes of three questions each. They are linked from within the lessons but the quiz app can be run locally; follow the instruction in the
quiz-app
folder.
Lesson Number | Topic | Lesson Grouping | Learning Objectives | Linked Lesson | Author |
---|---|---|---|---|---|
01 | Introduction to machine learning | Introduction | Learn the basic concepts behind machine learning | Lesson | Muhammad |
02 | The History of machine learning | Introduction | Learn the history underlying this field | Lesson | Jen and Amy |
03 | Fairness and machine learning | Introduction | What are the important philosophical issues around fairness that students should consider when building and applying ML models? | Lesson | Tomomi |
04 | Techniques for machine learning | Introduction | What techniques do ML researchers use to build ML models? | Lesson | Chris and Jen |
05 | Introduction to regression | Regression | Get started with Python and Scikit-learn for regression models |
|
|
06 | North American pumpkin prices
|
Regression | Visualize and clean data in preparation for ML |
|
|
07 | North American pumpkin prices
|
Regression | Build linear and polynomial regression models |
|
|
08 | North American pumpkin prices
|
Regression | Build a logistic regression model |
|
|
09 | A Web App
|
Web App | Build a web app to use your trained model | Python | Jen |
10 | Introduction to classification | Classification | Clean, prep, and visualize your data; introduction to classification |
|
|
11 | Delicious Asian and Indian cuisines
|
Classification | Introduction to classifiers |
|
|
12 | Delicious Asian and Indian cuisines
|
Classification | More classifiers |
|
|
13 | Delicious Asian and Indian cuisines
|
Classification | Build a recommender web app using your model | Python | Jen |
14 | Introduction to clustering | Clustering | Clean, prep, and visualize your data; Introduction to clustering |
|
|
15 | Exploring Nigerian Musical Tastes
|
Clustering | Explore the K-Means clustering method |
|
|
16 | Introduction to natural language processing
|
Natural language processing | Learn the basics about NLP by building a simple bot | Python | Stephen |
17 | Common NLP Tasks
|
Natural language processing | Deepen your NLP knowledge by understanding common tasks required when dealing with language structures | Python | Stephen |
18 | Translation and sentiment analysis
|
Natural language processing | Translation and sentiment analysis with Jane Austen | Python | Stephen |
19 | Romantic hotels of Europe
|
Natural language processing | Sentiment analysis with hotel reviews 1 | Python | Stephen |
20 | Romantic hotels of Europe
|
Natural language processing | Sentiment analysis with hotel reviews 2 | Python | Stephen |
21 | Introduction to time series forecasting | Time series | Introduction to time series forecasting | Python | Francesca |
22 |
|
Time series | Time series forecasting with ARIMA | Python | Francesca |
23 | Introduction to reinforcement learning | Reinforcement learning | Introduction to reinforcement learning with Q-Learning | Python | Dmitry |
24 | Help Peter avoid the wolf!
|
Reinforcement learning | Reinforcement learning Gym | Python | Dmitry |
Postscript | Real-World ML scenarios and applications | ML in the Wild | Interesting and revealing real-world applications of classical ML | Lesson | Team |
You can run this documentation offline by using Docsify. Fork this repo, install Docsify on your local machine, and then in the root folder of this repo, type docsify serve
. The website will be served on port 3000 on your localhost: localhost:3000
.
Find a pdf of the curriculum with links here.
Would you like to contribute a translation? Please read our translation guidelines and add input here.
Our team produces other curricula! Check out:
网址是:https://www.tensorflow.org/get_started/mnist/beginners 个人觉得需要解释的地方,等哪天做个视频玩玩 引进数据集:mnist = input_data.read_data_sets(“MNIST_data/”,one_hot=True) one_hot表示法0=(1,0,0),1=(0,1,0),2=(0,0,1)。 评估函数cross-
https://www.kaggle.com/adityaecdrid/mnist-with-keras-for-beginners-99457
This tutorial is intended for readers who are new to both machine learning and TensorFlow. If you already know what MNIST is, and what softmax (multinomial logistic) regression is, you might prefer th
This tutorial is intended for readers who are new to both machine learning and TensorFlow. If you already know what MNIST is, and what softmax (multinomial logistic) regression is, you might prefer th
PHP-ml 是 PHP 的机器学习库。同时包含算法,交叉验证,神经网络,预处理,特征提取等。 PHP-ML 要求 PHP >= 7.0。 示例 简单的分类示例: use Phpml\Classification\KNearestNeighbors;$samples = [[1, 3], [1, 4], [2, 4], [3, 1], [4, 1], [4, 2]];$labels = ['a',
Machine Learning Foundations This repo is home to the code that accompanies Jon Krohn's Machine Learning Foundations curriculum, which provides a comprehensive overview of all of the subjects — across
Machine Learning Notebooks This project aims at teaching you the fundamentals of Machine Learning inpython. It contains the example code and solutions to the exercises in my O'Reilly book Hands-on Mac
项目介绍 此项目是机器学习、NLP面试中常考到的知识点和代码实现,也是作为一个算法工程师必会的理论基础知识。 既然是以面试为主要目的,亦不可以篇概全,请谅解,有问题可提出。 此项目以各个模块为切入点,让大家有一个清晰的知识体系。 此项目亦可拿来常读、常记以及面试时复习之用。 每一章里的问题都是面试时有可能问到的知识点,如有遗漏可联系我进行补充,结尾处都有算法的实战代码案例。 思维导图,请关注 AI