RL4J

JVM 的深度强化学习库
授权协议 Apache
开发语言 Java
所属分类 神经网络/人工智能、 机器学习/深度学习
软件类型 开源软件
地区 不详
投 递 者 詹弘毅
操作系统 跨平台
开源组织
适用人群 未知
 软件概览

RL4J 是一个与 Deeplearning4j 集成的强化学习框架。

  • DQN(深度 DQ 学习与双 DQN)

  • Async RL(A3C,Async NStepQlearning)

两者都用于低维(数组)和高维(像素)输入。

  • SpringCloud版本:2021.0.1     SpringBoot版本:2.6.3 系列文章 SpringCloud学习(一)----- Eureka搭建 SpringCloud学习(二)----- SpringBoot Admin搭建(与Eureka整合) SpringCloud学习(三)----- Gatewayw网关搭建 SpringCloud学习(四)----- Gatewayw网

  • 首先我们需要打开终端,本经验以Fedora操作系统为例,其他的操作系统可能略有不同。打开终端之后我们输入ps,它就是我们今天的主角,ps是linux操作系统中最基本同时也是非常强大的进程查看命令,如果你对此命令不是十分了解,我们可以输入ps --help命令来查看此命令的帮助信息。 通过帮助信息我们可以看到,ps命令的相关参数有很多,很多初学的朋友可能会看的一头雾水,不知道该怎么组合这些参数,下面

 相关资料
  • 本节将讨论优化与深度学习的关系,以及优化在深度学习中的挑战。在一个深度学习问题中,我们通常会预先定义一个损失函数。有了损失函数以后,我们就可以使用优化算法试图将其最小化。在优化中,这样的损失函数通常被称作优化问题的目标函数(objective function)。依据惯例,优化算法通常只考虑最小化目标函数。其实,任何最大化问题都可以很容易地转化为最小化问题,只需令目标函数的相反数为新的目标函数即可

  • 主要内容 课程列表 专项课程学习 辅助课程 论文专区 课程列表 课程 机构 参考书 Notes等其他资料 卷积神经网络视觉识别 Stanford 暂无 链接 神经网络 Tweet 暂无 链接 深度学习用于自然语言处理 Stanford 暂无 链接 自然语言处理 Speech and Language Processing 链接 专项课程学习 下述的课程都是公认的最好的在线学习资料,侧重点不同,但推

  • Google Cloud Platform 推出了一个 Learn TensorFlow and deep learning, without a Ph.D. 的教程,介绍了如何基于 Tensorflow 实现 CNN 和 RNN,链接在 这里。 Youtube Slide1 Slide2 Sample Code

  • 我计划编写一个国际象棋引擎,它使用深度卷积神经网络来评估国际象棋的位置。我将使用位板来表示棋盘状态,这意味着输入层应该有12*64个神经元用于位置,1个用于玩家移动(0表示黑色,1表示白色)和4个神经元用于铸币权(wks、bks、wqs、bqs)。将有两个隐藏层,每个层有515个神经元,一个输出神经元的值介于-1表示黑色获胜,1表示白色获胜,0表示相等的位置。所有神经元都将使用tanh()激活函数

  • 主要内容 课程列表 基础知识 专项课程学习 参考书籍 论文专区 课程列表 课程 机构 参考书 Notes等其他资料 MDP和RL介绍8 9 10 11 Berkeley 暂无 链接 MDP简介 暂无 Shaping and policy search in Reinforcement learning 链接 强化学习 UCL An Introduction to Reinforcement Lea

  • 强化学习(Reinforcement Learning)的输入数据作为对模型的反馈,强调如何基于环境而行动,以取得最大化的预期利益。与监督式学习之间的区别在于,它并不需要出现正确的输入/输出对,也不需要精确校正次优化的行为。强化学习更加专注于在线规划,需要在探索(在未知的领域)和遵从(现有知识)之间找到平衡。 Deep Q Learning.

  • 现在开始学深度学习。在这部分讲义中,我们要简单介绍神经网络,讨论一下向量化以及利用反向传播(backpropagation)来训练神经网络。 1 神经网络(Neural Networks) 我们将慢慢的从一个小问题开始一步一步的构建一个神经网络。回忆一下本课程最开始的时就见到的那个房价预测问题:给定房屋的面积,我们要预测其价格。 在之前的章节中,我们学到的方法是在数据图像中拟合一条直线。现在咱们不

  • 深度学习的总体来讲分三层,输入层,隐藏层和输出层。如下图: 但是中间的隐藏层可以是多层,所以叫深度神经网络,中间的隐藏层可以有多种形式,就构成了各种不同的神经网络模型。这部分主要介绍各种常见的神经网络层。在熟悉这些常见的层后,一个神经网络其实就是各种不同层的组合。后边介绍主要基于keras的文档进行组织介绍。