RL4J 是一个与 Deeplearning4j 集成的强化学习框架。
DQN(深度 DQ 学习与双 DQN)
Async RL(A3C,Async NStepQlearning)
两者都用于低维(数组)和高维(像素)输入。
SpringCloud版本:2021.0.1 SpringBoot版本:2.6.3 系列文章 SpringCloud学习(一)----- Eureka搭建 SpringCloud学习(二)----- SpringBoot Admin搭建(与Eureka整合) SpringCloud学习(三)----- Gatewayw网关搭建 SpringCloud学习(四)----- Gatewayw网
首先我们需要打开终端,本经验以Fedora操作系统为例,其他的操作系统可能略有不同。打开终端之后我们输入ps,它就是我们今天的主角,ps是linux操作系统中最基本同时也是非常强大的进程查看命令,如果你对此命令不是十分了解,我们可以输入ps --help命令来查看此命令的帮助信息。 通过帮助信息我们可以看到,ps命令的相关参数有很多,很多初学的朋友可能会看的一头雾水,不知道该怎么组合这些参数,下面
本节将讨论优化与深度学习的关系,以及优化在深度学习中的挑战。在一个深度学习问题中,我们通常会预先定义一个损失函数。有了损失函数以后,我们就可以使用优化算法试图将其最小化。在优化中,这样的损失函数通常被称作优化问题的目标函数(objective function)。依据惯例,优化算法通常只考虑最小化目标函数。其实,任何最大化问题都可以很容易地转化为最小化问题,只需令目标函数的相反数为新的目标函数即可
主要内容 课程列表 专项课程学习 辅助课程 论文专区 课程列表 课程 机构 参考书 Notes等其他资料 卷积神经网络视觉识别 Stanford 暂无 链接 神经网络 Tweet 暂无 链接 深度学习用于自然语言处理 Stanford 暂无 链接 自然语言处理 Speech and Language Processing 链接 专项课程学习 下述的课程都是公认的最好的在线学习资料,侧重点不同,但推
Google Cloud Platform 推出了一个 Learn TensorFlow and deep learning, without a Ph.D. 的教程,介绍了如何基于 Tensorflow 实现 CNN 和 RNN,链接在 这里。 Youtube Slide1 Slide2 Sample Code
我计划编写一个国际象棋引擎,它使用深度卷积神经网络来评估国际象棋的位置。我将使用位板来表示棋盘状态,这意味着输入层应该有12*64个神经元用于位置,1个用于玩家移动(0表示黑色,1表示白色)和4个神经元用于铸币权(wks、bks、wqs、bqs)。将有两个隐藏层,每个层有515个神经元,一个输出神经元的值介于-1表示黑色获胜,1表示白色获胜,0表示相等的位置。所有神经元都将使用tanh()激活函数
主要内容 课程列表 基础知识 专项课程学习 参考书籍 论文专区 课程列表 课程 机构 参考书 Notes等其他资料 MDP和RL介绍8 9 10 11 Berkeley 暂无 链接 MDP简介 暂无 Shaping and policy search in Reinforcement learning 链接 强化学习 UCL An Introduction to Reinforcement Lea
强化学习(Reinforcement Learning)的输入数据作为对模型的反馈,强调如何基于环境而行动,以取得最大化的预期利益。与监督式学习之间的区别在于,它并不需要出现正确的输入/输出对,也不需要精确校正次优化的行为。强化学习更加专注于在线规划,需要在探索(在未知的领域)和遵从(现有知识)之间找到平衡。 Deep Q Learning.
现在开始学深度学习。在这部分讲义中,我们要简单介绍神经网络,讨论一下向量化以及利用反向传播(backpropagation)来训练神经网络。 1 神经网络(Neural Networks) 我们将慢慢的从一个小问题开始一步一步的构建一个神经网络。回忆一下本课程最开始的时就见到的那个房价预测问题:给定房屋的面积,我们要预测其价格。 在之前的章节中,我们学到的方法是在数据图像中拟合一条直线。现在咱们不
深度学习的总体来讲分三层,输入层,隐藏层和输出层。如下图: 但是中间的隐藏层可以是多层,所以叫深度神经网络,中间的隐藏层可以有多种形式,就构成了各种不同的神经网络模型。这部分主要介绍各种常见的神经网络层。在熟悉这些常见的层后,一个神经网络其实就是各种不同层的组合。后边介绍主要基于keras的文档进行组织介绍。