tar
file using a tool like 7Zip.)Clone this repository somewhere so you can easily access the different source files:
git clone https://github.com/Azure/kubeflow-labs
Module | Description | |
---|---|---|
0 | Introduction | Introduction to this workshop. Motivations and goals. |
1 | Docker | Docker and containers 101. |
2 | Kubernetes | Kubernetes important concepts overview. |
3 | Helm | Introduction to Helm |
4 | Kubeflow | Introduction to Kubeflow and how to deploy it in your cluster. |
5 | JupyterHub | Learn how to run JupyterHub to create and manage Jupyter notebooks using Kubeflow |
6 | TFJob | Introduction to TFJob and how to use it to deploy a simple TensorFlow training. |
7 | Distributed Tensorflow | Learn how to deploy and monitor distributed TensorFlow trainings with TFJob |
8 | Hyperparameters Sweep with Helm | Using Helm to deploy a large number of trainings testing different hypothesis, and TensorBoard to monitor and compare the results |
9 | Serving | Using TensorFlow Serving to serve predictions |
10 | Going Further | Links and resources to go further: Autoscaling, Distributed Storage etc. |
This project welcomes contributions and suggestions. Most contributions require you to agree to aContributor License Agreement (CLA) declaring that you have the right to, and actually do, grant usthe rights to use your contribution. For details, visit https://cla.microsoft.com.
When you submit a pull request, a CLA-bot will automatically determine whether you need to providea CLA and decorate the PR appropriately (e.g., label, comment). Simply follow the instructionsprovided by the bot. You will only need to do this once across all repos using our CLA.
This project has adopted the Microsoft Open Source Code of Conduct.For more information see the Code of Conduct FAQ orcontact opencode@microsoft.com with any additional questions or comments.
Microsoft and any contributors grant you a license to the Microsoft documentation and other contentin this repository under the Creative Commons Attribution 4.0 International Public License,see the LICENSE file, and grant you a license to any code in the repository under the MIT License, see theLICENSE-CODE file.
Microsoft, Windows, Microsoft Azure and/or other Microsoft products and services referenced in the documentationmay be either trademarks or registered trademarks of Microsoft in the United States and/or other countries.The licenses for this project do not grant you rights to use any Microsoft names, logos, or trademarks.Microsoft's general trademark guidelines can be found at http://go.microsoft.com/fwlink/?LinkID=254653.
Privacy information can be found at https://privacy.microsoft.com/en-us/
Microsoft and any contributors reserve all others rights, whether under their respective copyrights, patents,or trademarks, whether by implication, estoppel or otherwise.
Kubeflow 是 Google 发布的用于在 Kubernetes 集群中部署和管理 tensorflow 任务的框架。主要功能包括 用于管理 Jupyter 的 JupyterHub 服务 用于管理训练任务的 Tensorflow Training Controller 用于模型服务的 TF Serving 容器 部署 部署之前需要确保 一套部署好的 Kubernetes 集群或者 Mini
Kubeflow 是谷歌发布的一个机器学习工具库,Kubeflow 项目旨在使 Kubernetes 上的机器学习变的轻松、便捷、可扩展,其目标不是重建其他服务,而是提供一种简便的方式找到最好的 OSS 解决方案。该库包含包含的清单用于创建: 用于创建和管理交互式 Jupyter notebook 的 JupyterHub 可配置为使用 CPU 或 GPU,并通过单一设置调整至单个集群大小的 Te
我有一个EKS集群Kubernetes1.17,带有ALB入口控制器V2.0.0和Kubeflow 1.0和KFCTL1.0。能够让它工作和阿尔布将被纺纱。 我用ALB ingress controller V2.1.3和Kubeflow 1.2升级到EKS cluster Kubernetes 1.18&kfctl 1.2 ALB ingress适用于hello world应用程序或2048示例
问题内容: 所以我有我的开源项目(https://github.com/ahmednuaman/radian),并且我有一些e2e测试,可以使用Protractor在本地正常运行。 我关注了Sauce Labs文档, 并进行了相应的设置。测试运行到Protractor尝试连接到Sauce Labs上的selenium服务器的地步,这是该错误的简短快照: 这是完整的工作日志:https : //tr
问题内容: 在下方,您可以找到有关自动完成功能的MUI文档的示例,在该示例中,我已经在选项列表之前将链接传递给了google。但是,我无法单击该选项,事件目标只是MuiAutocomplete,而不是我正在传递的事件。 https://codesandbox.io/s/material-demo- egi6p 有趣的是,对自动完成功能开放 使它能够按预期工作。 目前,我正在使用onMouseDow
我使用嵌入式Browsermob代理服务器进行了本地工作测试。没有什么新内容,但这里仍然是示例代码。 现在,我们正在研究将此类测试集成到CI管道中并在云中执行这些测试的选项(Browserstack/Sauce实验室)。我正在试图弄清楚在这种情况下的设置是什么样子的。目前我的理解是,代码(设置代理并实际包含测试)将在我们的服务器上运行。这意味着嵌入式代理也将在我们的服务器上运行,而服务器不一定可以