A curated list of deep learning image classification papers and codes since 2014, Inspired by awesome-object-detection, deep_learning_object_detection and awesome-deep-learning-papers.
I believe image classification is a great start point before diving into other computer vision fields, espaciallyfor begginers who know nothing about deep learning. When I started to learn computer vision, I've made a lot of mistakes, I wish someone could have told me that which paper I should start with back then. There doesn't seem to have a repository to have a list of image classification papers like deep_learning_object_detection until now. Therefore, I decided to make a repositoryof a list of deep learning image classification papers and codes to help others. My personal advice for people whoknow nothing about deep learning, try to start with vgg, then googlenet, resnet, feel free to continue reading other listed papers or switch to other fields after you are finished.
Note: I also have a repository of pytorch implementation of some of the image classification networks, you can check out here.
For simplicity reason, I only listed the best top1 and top5 accuracy on ImageNet from the papers. Note that this does not necessarily mean one network is better than another when the acc is higher, cause some networks are focused on reducing the model complexity instead of improving accuracy, or some papers only give the single crop results on ImageNet, but others give the model fusion or multicrop results.
ConvNet | ImageNet top1 acc | ImageNet top5 acc | Published In |
---|---|---|---|
Vgg | 76.3 | 93.2 | ICLR2015 |
GoogleNet | - | 93.33 | CVPR2015 |
PReLU-nets | - | 95.06 | ICCV2015 |
ResNet | - | 96.43 | CVPR2015 |
PreActResNet | 79.9 | 95.2 | CVPR2016 |
Inceptionv3 | 82.8 | 96.42 | CVPR2016 |
Inceptionv4 | 82.3 | 96.2 | AAAI2016 |
Inception-ResNet-v2 | 82.4 | 96.3 | AAAI2016 |
Inceptionv4 + Inception-ResNet-v2 | 83.5 | 96.92 | AAAI2016 |
RiR | - | - | ICLR Workshop2016 |
Stochastic Depth ResNet | 78.02 | - | ECCV2016 |
WRN | 78.1 | 94.21 | BMVC2016 |
SqueezeNet | 60.4 | 82.5 | arXiv2017(rejected by ICLR2017) |
GeNet | 72.13 | 90.26 | ICCV2017 |
MetaQNN | - | - | ICLR2017 |
PyramidNet | 80.8 | 95.3 | CVPR2017 |
DenseNet | 79.2 | 94.71 | ECCV2017 |
FractalNet | 75.8 | 92.61 | ICLR2017 |
ResNext | - | 96.97 | CVPR2017 |
IGCV1 | 73.05 | 91.08 | ICCV2017 |
Residual Attention Network | 80.5 | 95.2 | CVPR2017 |
Xception | 79 | 94.5 | CVPR2017 |
MobileNet | 70.6 | - | arXiv2017 |
PolyNet | 82.64 | 96.55 | CVPR2017 |
DPN | 79 | 94.5 | NIPS2017 |
Block-QNN | 77.4 | 93.54 | CVPR2018 |
CRU-Net | 79.7 | 94.7 | IJCAI2018 |
ShuffleNet | 75.3 | - | CVPR2018 |
CondenseNet | 73.8 | 91.7 | CVPR2018 |
NasNet | 82.7 | 96.2 | CVPR2018 |
MobileNetV2 | 74.7 | - | CVPR2018 |
IGCV2 | 70.07 | - | CVPR2018 |
hier | 79.7 | 94.8 | ICLR2018 |
PNasNet | 82.9 | 96.2 | ECCV2018 |
AmoebaNet | 83.9 | 96.6 | arXiv2018 |
SENet | - | 97.749 | CVPR2018 |
ShuffleNetV2 | 81.44 | - | ECCV2018 |
IGCV3 | 72.2 | - | BMVC2018 |
MnasNet | 76.13 | 92.85 | CVPR2018 |
SKNet | 80.60 | - | CVPR2019 |
DARTS | 73.3 | 91.3 | ICLR2019 |
ProxylessNAS | 75.1 | 92.5 | ICLR2019 |
MobileNetV3 | 75.2 | - | arXiv2019 |
Res2Net | 79.2 | 94.37 | arXiv2019 |
EfficientNet | 84.3 | 97.0 | ICML2019 |
Very Deep Convolutional Networks for Large-Scale Image Recognition.Karen Simonyan, Andrew Zisserman
Going Deeper with ConvolutionsChristian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich
Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet ClassificationKaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun
Deep Residual Learning for Image RecognitionKaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun
Identity Mappings in Deep Residual NetworksKaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun
Rethinking the Inception Architecture for Computer VisionChristian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, Zbigniew Wojna
Inception-v4, Inception-ResNet and the Impact of Residual Connections on LearningChristian Szegedy, Sergey Ioffe, Vincent Vanhoucke, Alex Alemi
Resnet in Resnet: Generalizing Residual ArchitecturesSasha Targ, Diogo Almeida, Kevin Lyman
Deep Networks with Stochastic DepthGao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, Kilian Weinberger
Wide Residual NetworksSergey Zagoruyko, Nikos Komodakis
SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model sizeForrest N. Iandola, Song Han, Matthew W. Moskewicz, Khalid Ashraf, William J. Dally, Kurt Keutzer
Genetic CNNLingxi Xie, Alan Yuille
Designing Neural Network Architectures using Reinforcement LearningBowen Baker, Otkrist Gupta, Nikhil Naik, Ramesh Raskar
Deep Pyramidal Residual NetworksDongyoon Han, Jiwhan Kim, Junmo Kim
Densely Connected Convolutional NetworksGao Huang, Zhuang Liu, Laurens van der Maaten, Kilian Q. Weinberger
FractalNet: Ultra-Deep Neural Networks without ResidualsGustav Larsson, Michael Maire, Gregory Shakhnarovich
Aggregated Residual Transformations for Deep Neural NetworksSaining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, Kaiming He
Interleaved Group Convolutions for Deep Neural NetworksTing Zhang, Guo-Jun Qi, Bin Xiao, Jingdong Wang
Residual Attention Network for Image ClassificationFei Wang, Mengqing Jiang, Chen Qian, Shuo Yang, Cheng Li, Honggang Zhang, Xiaogang Wang, Xiaoou Tang
Xception: Deep Learning with Depthwise Separable ConvolutionsFrançois Chollet
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision ApplicationsAndrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam
PolyNet: A Pursuit of Structural Diversity in Very Deep NetworksXingcheng Zhang, Zhizhong Li, Chen Change Loy, Dahua Lin
Dual Path NetworksYunpeng Chen, Jianan Li, Huaxin Xiao, Xiaojie Jin, Shuicheng Yan, Jiashi Feng
Practical Block-wise Neural Network Architecture GenerationZhao Zhong, Junjie Yan, Wei Wu, Jing Shao, Cheng-Lin Liu
Sharing Residual Units Through Collective Tensor Factorization in Deep Neural NetworksChen Yunpeng, Jin Xiaojie, Kang Bingyi, Feng Jiashi, Yan Shuicheng
ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile DevicesXiangyu Zhang, Xinyu Zhou, Mengxiao Lin, Jian Sun
CondenseNet: An Efficient DenseNet using Learned Group ConvolutionsGao Huang, Shichen Liu, Laurens van der Maaten, Kilian Q. Weinberger
Learning Transferable Architectures for Scalable Image RecognitionBarret Zoph, Vijay Vasudevan, Jonathon Shlens, Quoc V. Le
MobileNetV2: Inverted Residuals and Linear BottlenecksMark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen
IGCV2: Interleaved Structured Sparse Convolutional Neural NetworksGuotian Xie, Jingdong Wang, Ting Zhang, Jianhuang Lai, Richang Hong, Guo-Jun Qi
Hierarchical Representations for Efficient Architecture SearchHanxiao Liu, Karen Simonyan, Oriol Vinyals, Chrisantha Fernando, Koray Kavukcuoglu
Progressive Neural Architecture SearchChenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan Yuille, Jonathan Huang, Kevin Murphy
Regularized Evolution for Image Classifier Architecture SearchEsteban Real, Alok Aggarwal, Yanping Huang, Quoc V Le
Squeeze-and-Excitation NetworksJie Hu, Li Shen, Samuel Albanie, Gang Sun, Enhua Wu
ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture DesignNingning Ma, Xiangyu Zhang, Hai-Tao Zheng, Jian Sun
IGCV3: Interleaved Low-Rank Group Convolutions for Efficient Deep Neural NetworksKe Sun, Mingjie Li, Dong Liu, Jingdong Wang
MnasNet: Platform-Aware Neural Architecture Search for MobileMingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Quoc V. Le
Selective Kernel NetworksXiang Li, Wenhai Wang, Xiaolin Hu, Jian Yang
DARTS: Differentiable Architecture SearchHanxiao Liu, Karen Simonyan, Yiming Yang
ProxylessNAS: Direct Neural Architecture Search on Target Task and HardwareHan Cai, Ligeng Zhu, Song Han
Searching for MobileNetV3Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, Quoc V. Le, Hartwig Adam
Res2Net: A New Multi-scale Backbone ArchitectureShang-Hua Gao, Ming-Ming Cheng, Kai Zhao, Xin-Yu Zhang, Ming-Hsuan Yang, Philip Torr
EfficientNet: Rethinking Model Scaling for Convolutional Neural NetworksMingxing Tan, Quoc V. Le
Build the custom_train_dataset The first step is to:build image classification dataset, partition training set and test set,collect image,download example data set,delete more unuseful file,do image s
Image-to-Image papers A collection of image-to-image papers. Papers are ordered in arXiv first version submitting time (if applicable). Feel free to send a PR or issue. TOC Supervised Unsupervised Uns
这几天看了HARALICK在1973年写的这篇论文,学到了挺多知识。 这篇文章对于物体纹理特征提取是奠基性的,非常赞!! 我觉得最主要学到了两个方面知识。 第一,是提取纹理。 文中介绍了(中文大家都叫灰度共生矩阵),比如下面是我的4*4图片,有且只有4种灰度 0 0 1 1 0 0 1 1 0 2 2 2 2 2 3 3 那么,我就可以提取出灰度共生矩阵,注意,灰度共生矩阵是个方阵,长宽是灰度的种
Awesome Awesome Node.js A curated list of awesome lists that are about or related to Node.js. Inspired by the awesome list thing, going deeper down the rabbit hole. �� Meta stuff about this awesome li
描述 图片展示组件,类似于 HTML image 标签,但提供了更丰富的功能,使用时需指定样式宽高值。 安装 $ npm install rax-image --save 属性 属性 类型 默认值 必填 描述 支持 source Object: {uri: String} - ✔️ 设置图片的 uri style Object: { width: Number height: Number } -
图片操作. 支持 安装 $ npm install universal-image --save 方法 choose(options) 拍照或从本地相册中选择图片。 参数 属性 类型 默认值 必选 描述 支持 count Number 1 x 最大可选照片数 sizeType String Array ['original', 'compressed'] x original 原图,compres
简介 <image> 用于在界面中显示单个图片。 TIP 在代码中请使用 <image> 标签, <img> 的存在只是因为兼容性原因,在将来的版本中可能删除。 Weex 没有内置的图片库,因为一些开源项目如 SDWebImage 和Picasso已经能很好的解决这个问题, 所以在使用 <image> 之前,请在 native 侧先接入相应的 adapter 或者 handler。参见: Andr
Random.image( size?, background?, foreground?, format?, text? ) Random.image() Random.image( size ) Random.image( size, background ) Random.image( size, background, text ) Random.image( size, backgrou
这用于将图像添加到图形中。 语法 (Syntax) 以下是添加图像的简单语法。 xtype: 'draw', type: 'image' 例子 (Example) 以下是一个显示用法的简单示例。 <!DOCTYPE html> <html> <head> <link href = "https://cdnjs.cloudflare.com/ajax/libs/extjs/6.0