awesome-image-classification

授权协议 Readme
开发语言 Python
所属分类 神经网络/人工智能、 机器学习/深度学习
软件类型 开源软件
地区 不详
投 递 者 锺离珂
操作系统 跨平台
开源组织
适用人群 未知
 软件概览

Awesome - Image Classification

A curated list of deep learning image classification papers and codes since 2014, Inspired by awesome-object-detection, deep_learning_object_detection and awesome-deep-learning-papers.

Background

I believe image classification is a great start point before diving into other computer vision fields, espaciallyfor begginers who know nothing about deep learning. When I started to learn computer vision, I've made a lot of mistakes, I wish someone could have told me that which paper I should start with back then. There doesn't seem to have a repository to have a list of image classification papers like deep_learning_object_detection until now. Therefore, I decided to make a repositoryof a list of deep learning image classification papers and codes to help others. My personal advice for people whoknow nothing about deep learning, try to start with vgg, then googlenet, resnet, feel free to continue reading other listed papers or switch to other fields after you are finished.

Note: I also have a repository of pytorch implementation of some of the image classification networks, you can check out here.

Performance Table

For simplicity reason, I only listed the best top1 and top5 accuracy on ImageNet from the papers. Note that this does not necessarily mean one network is better than another when the acc is higher, cause some networks are focused on reducing the model complexity instead of improving accuracy, or some papers only give the single crop results on ImageNet, but others give the model fusion or multicrop results.

  • ConvNet: name of the covolution network
  • ImageNet top1 acc: best top1 accuracy on ImageNet from the Paper
  • ImageNet top5 acc: best top5 accuracy on ImageNet from the Paper
  • Published In: which conference or journal the paper was published in.
ConvNet ImageNet top1 acc ImageNet top5 acc Published In
Vgg 76.3 93.2 ICLR2015
GoogleNet - 93.33 CVPR2015
PReLU-nets - 95.06 ICCV2015
ResNet - 96.43 CVPR2015
PreActResNet 79.9 95.2 CVPR2016
Inceptionv3 82.8 96.42 CVPR2016
Inceptionv4 82.3 96.2 AAAI2016
Inception-ResNet-v2 82.4 96.3 AAAI2016
Inceptionv4 + Inception-ResNet-v2 83.5 96.92 AAAI2016
RiR - - ICLR Workshop2016
Stochastic Depth ResNet 78.02 - ECCV2016
WRN 78.1 94.21 BMVC2016
SqueezeNet 60.4 82.5 arXiv2017(rejected by ICLR2017)
GeNet 72.13 90.26 ICCV2017
MetaQNN - - ICLR2017
PyramidNet 80.8 95.3 CVPR2017
DenseNet 79.2 94.71 ECCV2017
FractalNet 75.8 92.61 ICLR2017
ResNext - 96.97 CVPR2017
IGCV1 73.05 91.08 ICCV2017
Residual Attention Network 80.5 95.2 CVPR2017
Xception 79 94.5 CVPR2017
MobileNet 70.6 - arXiv2017
PolyNet 82.64 96.55 CVPR2017
DPN 79 94.5 NIPS2017
Block-QNN 77.4 93.54 CVPR2018
CRU-Net 79.7 94.7 IJCAI2018
ShuffleNet 75.3 - CVPR2018
CondenseNet 73.8 91.7 CVPR2018
NasNet 82.7 96.2 CVPR2018
MobileNetV2 74.7 - CVPR2018
IGCV2 70.07 - CVPR2018
hier 79.7 94.8 ICLR2018
PNasNet 82.9 96.2 ECCV2018
AmoebaNet 83.9 96.6 arXiv2018
SENet - 97.749 CVPR2018
ShuffleNetV2 81.44 - ECCV2018
IGCV3 72.2 - BMVC2018
MnasNet 76.13 92.85 CVPR2018
SKNet 80.60 - CVPR2019
DARTS 73.3 91.3 ICLR2019
ProxylessNAS 75.1 92.5 ICLR2019
MobileNetV3 75.2 - arXiv2019
Res2Net 79.2 94.37 arXiv2019
EfficientNet 84.3 97.0 ICML2019

Papers&Codes

VGG

Very Deep Convolutional Networks for Large-Scale Image Recognition.Karen Simonyan, Andrew Zisserman

GoogleNet

Going Deeper with ConvolutionsChristian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich

PReLU-nets

Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet ClassificationKaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun

ResNet

Deep Residual Learning for Image RecognitionKaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun

PreActResNet

Identity Mappings in Deep Residual NetworksKaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun

Inceptionv3

Rethinking the Inception Architecture for Computer VisionChristian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, Zbigniew Wojna

Inceptionv4 && Inception-ResNetv2

Inception-v4, Inception-ResNet and the Impact of Residual Connections on LearningChristian Szegedy, Sergey Ioffe, Vincent Vanhoucke, Alex Alemi

RiR

Resnet in Resnet: Generalizing Residual ArchitecturesSasha Targ, Diogo Almeida, Kevin Lyman

Stochastic Depth ResNet

Deep Networks with Stochastic DepthGao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, Kilian Weinberger

WRN

Wide Residual NetworksSergey Zagoruyko, Nikos Komodakis

SqueezeNet

SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model sizeForrest N. Iandola, Song Han, Matthew W. Moskewicz, Khalid Ashraf, William J. Dally, Kurt Keutzer

GeNet

Genetic CNNLingxi Xie, Alan Yuille

MetaQNN

Designing Neural Network Architectures using Reinforcement LearningBowen Baker, Otkrist Gupta, Nikhil Naik, Ramesh Raskar

PyramidNet

Deep Pyramidal Residual NetworksDongyoon Han, Jiwhan Kim, Junmo Kim

DenseNet

Densely Connected Convolutional NetworksGao Huang, Zhuang Liu, Laurens van der Maaten, Kilian Q. Weinberger

FractalNet

FractalNet: Ultra-Deep Neural Networks without ResidualsGustav Larsson, Michael Maire, Gregory Shakhnarovich

ResNext

Aggregated Residual Transformations for Deep Neural NetworksSaining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, Kaiming He

IGCV1

Interleaved Group Convolutions for Deep Neural NetworksTing Zhang, Guo-Jun Qi, Bin Xiao, Jingdong Wang

Residual Attention Network

Residual Attention Network for Image ClassificationFei Wang, Mengqing Jiang, Chen Qian, Shuo Yang, Cheng Li, Honggang Zhang, Xiaogang Wang, Xiaoou Tang

Xception

Xception: Deep Learning with Depthwise Separable ConvolutionsFrançois Chollet

MobileNet

MobileNets: Efficient Convolutional Neural Networks for Mobile Vision ApplicationsAndrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam

PolyNet

PolyNet: A Pursuit of Structural Diversity in Very Deep NetworksXingcheng Zhang, Zhizhong Li, Chen Change Loy, Dahua Lin

DPN

Dual Path NetworksYunpeng Chen, Jianan Li, Huaxin Xiao, Xiaojie Jin, Shuicheng Yan, Jiashi Feng

Block-QNN

Practical Block-wise Neural Network Architecture GenerationZhao Zhong, Junjie Yan, Wei Wu, Jing Shao, Cheng-Lin Liu

CRU-Net

Sharing Residual Units Through Collective Tensor Factorization in Deep Neural NetworksChen Yunpeng, Jin Xiaojie, Kang Bingyi, Feng Jiashi, Yan Shuicheng

ShuffleNet

ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile DevicesXiangyu Zhang, Xinyu Zhou, Mengxiao Lin, Jian Sun

CondenseNet

CondenseNet: An Efficient DenseNet using Learned Group ConvolutionsGao Huang, Shichen Liu, Laurens van der Maaten, Kilian Q. Weinberger

NasNet

Learning Transferable Architectures for Scalable Image RecognitionBarret Zoph, Vijay Vasudevan, Jonathon Shlens, Quoc V. Le

MobileNetV2

MobileNetV2: Inverted Residuals and Linear BottlenecksMark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen

IGCV2

IGCV2: Interleaved Structured Sparse Convolutional Neural NetworksGuotian Xie, Jingdong Wang, Ting Zhang, Jianhuang Lai, Richang Hong, Guo-Jun Qi

hier

Hierarchical Representations for Efficient Architecture SearchHanxiao Liu, Karen Simonyan, Oriol Vinyals, Chrisantha Fernando, Koray Kavukcuoglu

PNasNet

Progressive Neural Architecture SearchChenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan Yuille, Jonathan Huang, Kevin Murphy

AmoebaNet

Regularized Evolution for Image Classifier Architecture SearchEsteban Real, Alok Aggarwal, Yanping Huang, Quoc V Le

SENet

Squeeze-and-Excitation NetworksJie Hu, Li Shen, Samuel Albanie, Gang Sun, Enhua Wu

ShuffleNetV2

ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture DesignNingning Ma, Xiangyu Zhang, Hai-Tao Zheng, Jian Sun

IGCV3

IGCV3: Interleaved Low-Rank Group Convolutions for Efficient Deep Neural NetworksKe Sun, Mingjie Li, Dong Liu, Jingdong Wang

MNasNet

MnasNet: Platform-Aware Neural Architecture Search for MobileMingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Quoc V. Le

SKNet

Selective Kernel NetworksXiang Li, Wenhai Wang, Xiaolin Hu, Jian Yang

DARTS

DARTS: Differentiable Architecture SearchHanxiao Liu, Karen Simonyan, Yiming Yang

ProxylessNAS

ProxylessNAS: Direct Neural Architecture Search on Target Task and HardwareHan Cai, Ligeng Zhu, Song Han

MobileNetV3

Searching for MobileNetV3Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, Quoc V. Le, Hartwig Adam

Res2Net

Res2Net: A New Multi-scale Backbone ArchitectureShang-Hua Gao, Ming-Ming Cheng, Kai Zhao, Xin-Yu Zhang, Ming-Hsuan Yang, Philip Torr

EfficientNet

EfficientNet: Rethinking Model Scaling for Convolutional Neural NetworksMingxing Tan, Quoc V. Le

  • Build the custom_train_dataset The first step is to:build image classification dataset, partition training set and test set,collect image,download example data set,delete more unuseful file,do image s

  • Image-to-Image papers A collection of image-to-image papers. Papers are ordered in arXiv first version submitting time (if applicable). Feel free to send a PR or issue. TOC Supervised Unsupervised Uns

  • 这几天看了HARALICK在1973年写的这篇论文,学到了挺多知识。 这篇文章对于物体纹理特征提取是奠基性的,非常赞!! 我觉得最主要学到了两个方面知识。 第一,是提取纹理。 文中介绍了(中文大家都叫灰度共生矩阵),比如下面是我的4*4图片,有且只有4种灰度 0 0 1 1 0 0 1 1 0 2 2 2 2 2 3 3 那么,我就可以提取出灰度共生矩阵,注意,灰度共生矩阵是个方阵,长宽是灰度的种

 相关资料
  • Awesome Awesome Node.js A curated list of awesome lists that are about or related to Node.js. Inspired by the awesome list thing, going deeper down the rabbit hole. �� Meta stuff about this awesome li

  • 描述 图片展示组件,类似于 HTML image 标签,但提供了更丰富的功能,使用时需指定样式宽高值。 安装 $ npm install rax-image --save 属性 属性 类型 默认值 必填 描述 支持 source Object: {uri: String} - ✔️ 设置图片的 uri style Object: { width: Number height: Number } -

  • 图片操作. 支持 安装 $ npm install universal-image --save 方法 choose(options) 拍照或从本地相册中选择图片。 参数 属性 类型 默认值 必选 描述 支持 count Number 1 x 最大可选照片数 sizeType String Array ['original', 'compressed'] x original 原图,compres

  • 简介 <image> 用于在界面中显示单个图片。 TIP 在代码中请使用 <image> 标签, <img> 的存在只是因为兼容性原因,在将来的版本中可能删除。 Weex 没有内置的图片库,因为一些开源项目如 SDWebImage 和Picasso已经能很好的解决这个问题, 所以在使用 <image> 之前,请在 native 侧先接入相应的 adapter 或者 handler。参见: Andr

  • Random.image( size?, background?, foreground?, format?, text? ) Random.image() Random.image( size ) Random.image( size, background ) Random.image( size, background, text ) Random.image( size, backgrou

  • 这用于将图像添加到图形中。 语法 (Syntax) 以下是添加图像的简单语法。 xtype: 'draw', type: 'image' 例子 (Example) 以下是一个显示用法的简单示例。 <!DOCTYPE html> <html> <head> <link href = "https://cdnjs.cloudflare.com/ajax/libs/extjs/6.0