ScalaNLP 是一组 Scala 的机器学习和数学计算库。包含了很多库的封装。
示例代码:
scala> x(0) Double = 0.0 scala> x(1) = 2 scala> x breeze.linalg.DenseVector[Double] = DenseVector(0.0, 2.0, 0.0, 0.0, 0.0)
统计分布 breeze.stats.distributions.Guassian(0,1) 正态分布/高斯分布 breeze.stats.distributions.Binomial(n,p) 伯努利二项分布 breeze.stats.distributions.Gamma(n,p) 伽马分布 breeze.stats.distributions.Poisson(3.0)
自然语言处理 ScalaNLP—机器学习和数值计算库的套装 Breeze —Scala用的数值处理库 Chalk—自然语言处理库。 FACTORIE—可部署的概率建模工具包,用Scala实现的软件库。为用户提供简洁的语言来创建关系因素图,评估参数并进行推断。 数据分析/数据可视化 MLlib in Apache Spark—Spark下的分布式机器学习库 Scalding —CAscading的S
Go适合服务端、桌面应用程序开发。 Scala适合服务端、大数据、数据挖掘、NLP、图像识别、机器学习、深度学习…等等开发。 Python适合做网络爬虫、自动化运维、快速地实现算法的原型。 但是Python仍有一些不足之处。 Python性能是个问题,而且多线程并发是劣势。 Python大型项目,架构和重构是灾难。 Python的代码缩进是个坑,当你在使用Python,一小部分代码的修改可能导致你
主要内容:机器学习,深度学习,机器学习与深度学习的区别,机器学习和深度学习的应用人工智能是近几年来最流行的趋势之一。机器学习和深度学习构成了人工智能。下面显示的维恩图解释了机器学习和深度学习的关系 - 机器学习 机器学习是让计算机按照设计和编程的算法行事的科学艺术。许多研究人员认为机器学习是实现人类AI的最佳方式。机器学习包括以下类型的模式 - 监督学习模式 无监督学习模式 深度学习 深度学习是机器学习的一个子领域,其中有关算法的灵感来自大脑的结构和功能,称为人工神经网络。
Index 基本遵从《统计学习方法》一书中的符号表示。 除特别说明,默认w为行向量,x为列向量,以避免在wx 中使用转置符号;但有些公式为了更清晰区分向量与标量,依然会使用^T的上标,注意区分。 输入实例x的特征向量记为: 注意:x_i 和 x^(i) 含义不同,前者表示训练集中第 i 个实例,后者表示特征向量中的第 i 个分量;因此,通常记训练集为: 特征向量用小n表示维数,训练集用大N表示个数
计算机编程是编写计算机程序的行为,计算机程序是使用计算机程序设计语言编写的指令序列,以通过计算机执行指定的任务。
“三个臭皮匠顶个诸葛亮”。集成学习就是利用了这样的思想,通过把多分类器组合在一起的方式,构建出一个强分类器;这些被组合的分类器被称为基分类器。事实上,随机森林就属于集成学习的范畴。通常,集成学习具有更强的泛化能力,大量弱分类器的存在降低了分类错误率,也对于数据的噪声有很好的包容性。
Python 有着海量的可用于数据分析、统计以及机器学习的库,这使得 Python 成为很多数据科学家所选择的语言。 下面我们列出了一些被广泛使用的机器学习及其他数据科学应用的 Python 包。 Scipy 技术栈 Scipy 技术栈由一大批在数据科学中被广泛使用的核心辅助包构成,可用于统计分析与数据可视化。由于其丰富的功能和简单易用的特性,这一技术栈已经被视作实现大多数数据科学应用的必备品了。
主要内容 前言 课程列表 推荐学习路线 数学基础初级 程序语言能力 机器学习课程初级 数学基础中级 机器学习课程中级 推荐书籍列表 机器学习专项领域学习 致谢 前言 我们要求把这些课程的所有Notes,Slides以及作者强烈推荐的论文看懂看明白,并完成所有的老师布置的习题,而推荐的书籍是不做要求的,如果有些书籍是需要看完的,我们会进行额外的说明。 课程列表 课程 机构 参考书 Notes等其他资
机器学习与人工智能学习笔记,包括机器学习、深度学习以及常用开源框架(Tensorflow、PyTorch)等。 机器学习算法 _图片来自scikit-learn_。 机器学习全景图 _图片来自http://www.shivonzilis.com/_。
机器学习与人工智能学习笔记,包括机器学习、深度学习以及常用开源框架(Tensorflow、PyTorch)等。