cuML是一套用于实现与其他RAPIDS项目共享兼容API的机器学习算法和数学原语函数。
cuML使数据科学家、研究人员和软件工程师能够在GPU上运行传统的表格ML任务,而无需深入了解CUDA编程的细节。 在大多数情况下,cuML的Python API与来自scikit-learn的API相匹配。
对于大型数据集,这些基于GPU的实现可以比其CPU等效完成10-50倍。 有关性能的详细信息,请参阅cuML基准测试笔记本。
例如,以下Python代码段加载输入并计算DBSCAN集群,所有这些都在GPU上:
import cudf from cuml.cluster import DBSCAN # Create and populate a GPU DataFrame gdf_float = cudf.DataFrame() gdf_float['0'] = [1.0, 2.0, 5.0] gdf_float['1'] = [4.0, 2.0, 1.0] gdf_float['2'] = [4.0, 2.0, 1.0] # Setup and fit clusters dbscan_float = DBSCAN(eps=1.0, min_samples=1) dbscan_float.fit(gdf_float) print(dbscan_float.labels_)
输出:
0 0
1 1
2 2
dtype: int32
cuML还具有多GPU和多节点多GPU操作,使用Dask,用于越来越多的算法。 以下Python代码段从CSV文件中读取输入,并在单个节点上使用多个GPU在Dask工作器集群中执行NearestNeighbors查询:
# Create a Dask CUDA cluster w/ one worker per device
from dask_cuda import LocalCUDACluster
cluster = LocalCUDACluster()
# Read CSV file in parallel across workers
import dask_cudf
df = dask_cudf.read_csv("/path/to/csv")
# Fit a NearestNeighbors model and query it
from cuml.dask.neighbors import NearestNeighbors
nn = NearestNeighbors(n_neighbors = 10)
nn.fit(df)
neighbors = nn.kneighbors(df)
My computer’s gpu is gtx3060ti, cuda version is 11.4. First Check the version of your gcc, type “gcc -v”, ensuring that your gcc version is 9 or higher, my computer is at 9.4 version gcc. Also, remind
Index 基本遵从《统计学习方法》一书中的符号表示。 除特别说明,默认w为行向量,x为列向量,以避免在wx 中使用转置符号;但有些公式为了更清晰区分向量与标量,依然会使用^T的上标,注意区分。 输入实例x的特征向量记为: 注意:x_i 和 x^(i) 含义不同,前者表示训练集中第 i 个实例,后者表示特征向量中的第 i 个分量;因此,通常记训练集为: 特征向量用小n表示维数,训练集用大N表示个数
问题答案可关注公众号 机器学习算法面试,回复“资料”即可领取啦~~ 1.机器学习理论 1.1 数学知识 1.1.1 机器学习中的距离和相似度度量方式有哪些? 1.1.2 马氏距离比欧式距离的异同点? 1.1.3 张量与矩阵的区别? 1.1.4 如何判断矩阵为正定? 1.1.5 距离的严格定义? 1.1.6 参考 1.2 学习理论 1.2.1 什么是表示学习? 1.2.2 什么是端到端学习? 1.2
感知机可以理解为几何中的线性方程:w*x+b=0 对应于特征空间 R^n 中的一个超平面 S ,其中 w 是超平面法向量,b 是超平面的截距。这个超平面将特征空间划分为两个部分。位于两部分的点(特征向量)分别被分为正、负两类。
本教程将全面介绍深度学习从模型构造到模型训练的方方面面,以及它们在计算机视觉和自然语言处理中的应用。
二面挂 总时长1.5h,面试45min,剩下时间手撕 面试大概问题: 1.讲数据挖掘比赛的过程 2.连续字段怎么转换为离散字段 3.讲一个困难的经历是如何解决并分工的 4.讲一个自己熟悉的网络框架 5.L1正则和L2正则 6.多模态数据怎么利用,模型怎么设计 其他的记不清了 反问环节: 1.部门做什么的 2.用的主要方法是什么 手撕代码,两问: 1.给定函数f(x) = 1.2 x^2 - 0.8
前言: 岗位:机器学习算法实习 笔试情况:无笔试 一面 1.自我介绍(非科班硕,一份水实习); 2.介绍项目,并由此引出一系列八股文: 介绍gbdt算法的原理与实现 说说xgboost对于gbdt所做的主要优化 3.介绍实习工作 简单介绍resnet及其主要改进(shortcut连接,BN层),说说这些改进为什么work 介绍transformer及self-attention机制实现方式 了解哪
Python 有着海量的可用于数据分析、统计以及机器学习的库,这使得 Python 成为很多数据科学家所选择的语言。 下面我们列出了一些被广泛使用的机器学习及其他数据科学应用的 Python 包。 Scipy 技术栈 Scipy 技术栈由一大批在数据科学中被广泛使用的核心辅助包构成,可用于统计分析与数据可视化。由于其丰富的功能和简单易用的特性,这一技术栈已经被视作实现大多数数据科学应用的必备品了。
主要内容 前言 课程列表 推荐学习路线 数学基础初级 程序语言能力 机器学习课程初级 数学基础中级 机器学习课程中级 推荐书籍列表 机器学习专项领域学习 致谢 前言 我们要求把这些课程的所有Notes,Slides以及作者强烈推荐的论文看懂看明白,并完成所有的老师布置的习题,而推荐的书籍是不做要求的,如果有些书籍是需要看完的,我们会进行额外的说明。 课程列表 课程 机构 参考书 Notes等其他资