Milepost GCC

开源机器学习编译器
授权协议 未知
开发语言 C/C++
所属分类 神经网络/人工智能、 机器学习/深度学习
软件类型 开源软件
地区 不详
投 递 者 司徒经纶
操作系统 未知
开源组织
适用人群 未知
 软件概览

Milepost GCC 是IBM发布的世界上第一款开源机器学习编译器。

IBM称编译器能智能的优化程序,因此能缩短开发时间,同时又能提升性能。使用机器学习技术,编译器分析软件,确定哪些代码优化将能在编译中取得最 大的效率。对IBM System p服务器的初步试验显示,嵌入式软件性能平均提高了18%。新的编译器预计将减少新软件上市时间,因为原来由开发者手动优化的工作可以全都交给编译器完 成。一个基于Wiki的社区cTuning.org也与编译器一同发布。网站主要功能是使用统一的API开发开源工具,分享有趣的优化案例,展开协作式研究。

 相关资料
  • 以下是根据不同语言类型和应用领域收集的各类工具库,持续更新中。 C 通用机器学习 Recommender - 一个产品推荐的C语言库,利用了协同过滤. 计算机视觉 CCV - C-based/Cached/Core Computer Vision Library ,是一个现代化的计算机视觉库。 VLFeat - VLFeat 是开源的 computer vision algorithms库, 有

  • Python 有着海量的可用于数据分析、统计以及机器学习的库,这使得 Python 成为很多数据科学家所选择的语言。 下面我们列出了一些被广泛使用的机器学习及其他数据科学应用的 Python 包。 Scipy 技术栈 Scipy 技术栈由一大批在数据科学中被广泛使用的核心辅助包构成,可用于统计分析与数据可视化。由于其丰富的功能和简单易用的特性,这一技术栈已经被视作实现大多数数据科学应用的必备品了。

  • 主要内容 前言 课程列表 推荐学习路线 数学基础初级 程序语言能力 机器学习课程初级 数学基础中级 机器学习课程中级 推荐书籍列表 机器学习专项领域学习 致谢 前言 我们要求把这些课程的所有Notes,Slides以及作者强烈推荐的论文看懂看明白,并完成所有的老师布置的习题,而推荐的书籍是不做要求的,如果有些书籍是需要看完的,我们会进行额外的说明。 课程列表 课程 机构 参考书 Notes等其他资

  • 机器学习与人工智能学习笔记,包括机器学习、深度学习以及常用开源框架(Tensorflow、PyTorch)等。 机器学习算法 _图片来自scikit-learn_。 机器学习全景图 _图片来自http://www.shivonzilis.com/_。

  • 机器学习与人工智能学习笔记,包括机器学习、深度学习以及常用开源框架(Tensorflow、PyTorch)等。

  • “三个臭皮匠顶个诸葛亮”。集成学习就是利用了这样的思想,通过把多分类器组合在一起的方式,构建出一个强分类器;这些被组合的分类器被称为基分类器。事实上,随机森林就属于集成学习的范畴。通常,集成学习具有更强的泛化能力,大量弱分类器的存在降低了分类错误率,也对于数据的噪声有很好的包容性。

  • 用于制定人工智能、机器学习和深度学习课程表的资源概览。 制定课程表的一般建议 上学获得一个正式学位并不总是可行或者令人满意的。对于那些考虑自学来代替的人,这就是写给你们的。 1. 构建基础,之后专攻兴趣领域 你不能深入每个机器学习话题。有太多药学的东西,并且领域的进展较快。掌握基础概念,之后专注特定兴趣领域的项目 -- 无论是自然语言理解,计算机视觉,深度强化学习,机器人,还是任何其它东西。 2.

  • 主要内容:机器学习,深度学习,机器学习与深度学习的区别,机器学习和深度学习的应用人工智能是近几年来最流行的趋势之一。机器学习和深度学习构成了人工智能。下面显示的维恩图解释了机器学习和深度学习的关系 - 机器学习 机器学习是让计算机按照设计和编程的算法行事的科学艺术。许多研究人员认为机器学习是实现人类AI的最佳方式。机器学习包括以下类型的模式 - 监督学习模式 无监督学习模式 深度学习 深度学习是机器学习的一个子领域,其中有关算法的灵感来自大脑的结构和功能,称为人工神经网络。