Kornia 是一个基于 PyTorch 的可微分计算机视觉库。为了兼顾传统视觉处理与深度学习的需求,Kornia 实现了:
可微分的基础计算机视觉算子。
可微分的数据增广(differentiable data augmentation)。
Kornia 基于 PyTorch,具备如下特性:
可微分性。所有算子的梯度都可以通过 PyTorch 的 AutoGrad 计算,并使用 PyTorch 的优化器(如:Adam)来优化。
GPU/TPU 加速。除 CPU 外,Kornia 可以在 GPU 甚至 TPU 中进行运算。
批数据处理。同时处理大量数据来提高运行效率。
// 得到旋转矩阵 M: torch.tensor = kornia.get_rotation_matrix2d(center, angle, scale) # (batch_size, 2, 3) // 得到旋转后的图片 x_warped: torch.tensor = kornia.warp_affine(x.float(), M.to(x.device), dsize=(h, w))
官方连接 kornia-GitHub 可行版本/GPU-3080 Ubuntu 18.04 Driver Version: 460.27 CUDA Version: 11.1 torch: 1.10.2+cu111 torchvision: 0.11.3+cu111 torchaudio: 0.10.2+cu111 kornia: 0.6.5 小坑 在
项目链接:https://github.com/kornia/kornia 官方文档:https://kornia.readthedocs.io/en/latest/index.html Opencv文档:https://opencv.org/kornia-an-open-source-differentiable-computer-vision-library-for-pytorch/ 论文链接
官方资料 https://github.com/kornia/kornia 教程 https://kornia.readthedocs.io/en/latest/filters.html 自己测试 计算边缘
把插值mode换成nearest就好了 x = k.geometry.warp_perspective(x, self.pro_mats[cam], self.reduced_worldgrid_shape,mode="nearest")
一面: 自我介绍 项目介绍 八股文: 1. GBDT 2. xgboost 3.逻辑回归,svm,决策树的优缺点,适用场景 4.决策树和随机森林的区别 5.是否了解attention,transform的kqv 6.用过的loss函数,是否了解triplet loss之类的,好几个没听过的loss,没记住 7.batchnorm的参数是否可训练,b*c*w*h有多少个参数 8.如何进行上采样,上采
base 西安 一面(30min): 第一个面试官: (1) 英文自我介绍 英文说我的家乡和陕西的不同 (2) 介绍一个自己的项目 问了下模型的数据量 (3) 介绍一下模型训练的流程 (4) 完成括号匹配需要使用什么数据结构,讲一下怎么实现 (5) 主要使用的语言:python 了解c++吗:本科用过,但现在不熟 ×(6) 指针和引用有什么区别:我知道指针是啥...但是引用想成了python里的引
今天二面,手撕算法题是复原ip地址,编程弱鸡30分钟都没写出来,还是有问题放弃了 1.面试官自我介绍 2. 我自我介绍 3. 介绍我认为我觉得比较好的一个论文 4. 关于aaai那篇论文怎么做的 5. 打开论文讲,不然感觉有些抽象 6. 做个题吧,没做出来,最后他说不用做了 我让面试官看哪里不对他也一时半会儿改不了,回溯失败 7.反问: 1. 人力投入 2.培养 3. 做什么 4. 实习多久 总时
四月很多面试都推掉了,所以只面了两个厂,字节和虹软。顺便问下,华为暑期实习不推进的话会影响秋招吗? 字节一面: 自我介绍 分类和回归常见的损失函数? 逻辑斯蒂,hingeloss,l1,BCE,focal等等 BCE的公式是什么,和KL散度的关系和区别? 一部分log的系数不一样 selfattention的原理和过程 为什么selfattention能注意该注意的地方,你能数学证明出来吗? 我能
7.24 笔试 8.11 一面 自我介绍 项目1介绍(深挖) 项目2介绍(深挖) 代码:找到离给定两个节点最近的节点(力扣2359) 8.29 二面 自我介绍 项目1介绍(细挖) 项目2介绍(细挖) 专利介绍 反问 9.1 HR面 自我介绍 家庭情况 大学生活 研究生生活 未来规划 对象问题 #虹软#
没有填内推码 8.26 笔试 4道算法 A3.95 0903通知面试 0905 16.55开始面 面试官人贼好,上来说面试分三步 1. 介绍部门 2. 我介绍自己和实习内容,毕设项目 问了一些项目细节 3. 力扣 快速搜索 几分钟写完 17.25 结束面试 【我以为凉了KPI毕竟就面了30分钟,但是直接跟我说过了等通知二面...】 其中问了: 能不能实习,我觉得哪些事情是本科之后的转折点。
1,聊了一个项目 问了项目背景和项目难点以及对应的解决办法。 2,反问,聊一下公司的业务,解答问题 没有八股、手撕,面试官很nice。 update:傍晚HR通知说通过了,约了HR面。
9.11 时长正好60min 首先百度是给我最魔幻体验的公司了,因为一开始自己投了另一个也叫计算机视觉的岗,两天就共享中了,结果前几天自己变更了职位给自己捞进来面试了,自己最近疯狂被简历挂收到面试已经属于正反馈了,就冲这一点我这网盘大会员得永久续费了 然后第二点,自己今天的外出任务出了点意外导致不能按原定时间来,本来没报希望问了下HR,结果HR真给我沟通延迟了一小时!呜呜呜度子这恩情你让我怎么还啊