DPark

分布式计算框架
授权协议 BSD
开发语言 Python
所属分类 服务器软件、 分布式应用/网格
软件类型 开源软件
地区 国产
投 递 者 赏高格
操作系统 跨平台
开源组织 豆瓣
适用人群 未知
 软件概览

DPark 是 Spark 的 Python 克隆,是一个Python实现的分布式计算框架,可以非常方便地实现大规模数据处理和迭代计算。 DPark 由豆瓣实现,目前豆瓣内部的绝大多数数据分析都使用DPark 完成,正日趋完善。

示例代码:

 import dpark
 file = dpark.textFile("/tmp/words.txt")
 words = file.flatMap(lambda x:x.split()).map(lambda x:(x,1))
 wc = words.reduceByKey(lambda x,y:x+y).collectAsMap()
 print wc

该代码可以在本地和 Mesos 集群上运行:

$ python wc.py
$ python wc.py -m process
$ python wc.py -m host[:port]
  • Dpark Dpark-AND-Spark Dpark:Dpark是国内豆瓣公司根据Spark进行的克隆版本的实现 DPark 是一个类似MapReduce 的基于Mesos(Apache 下的一个集群管理器,提供了有效的、跨分布式应用或框架的资源隔离和共享等功能)的集群并行计算框架(Cluster Computing Framework),DPark 是Spark 的Python克隆版本,是一个

  •   Dpark 是Spark 的Python克隆版本,是一个用Python 语言实现的分布式计算框架,可以非常方便地实现大规模数据处理和低延时的迭代计算。该计算框架类似于MapReduce,但是比其更灵活,可以用Python 非常方便地进行分布式计算,并且提供了更多的功能,以便更好地进行迭代式计算。Dpark 由国内的豆瓣公司开发实现和负责维护,据豆瓣公司的描述,目前豆瓣公司内部的绝大多数数据分析

  • #简介 python 内存计算 是Spark的Python实现版本 #DPark是一个基于Mesos的集群计算框架(cluster computing framework),是Spark的Python实现版本,类似于MapReduce,但是比其更灵活,可以用Python非常方便地进行分布式计算,并且提供了更多的功能以便更好的进行迭代式计算。 http://hao.jobbole.com/dpark

  • Python部落(www.freelycode.com)翻译, 禁止转载 项目地址 https://github.com/douban/dpark 项目介绍 DPark是Python版的Spark, 一个类似于MapReduce的, 支持交互式计算的计算框架. 下面是一个数单词的例子(wc.py):import dpark file = dpark.textFile("/tmp/words.txt

  • 最近需要处理海量数据的分布式计算及数据挖掘,经过多次选择(hadoop,Spark,DPark),最后还是选择了DPark,主要是看中DPark的轻量级及python的灵活性,且除了豆瓣外,在几个友公司都有成功的应用案例。 不过很痛苦的是DPark的资料太少了,连github上的官方wiki都不够详细,暂时只能主要靠自己摸索。 这篇文章主要记录DPark的一些资料及我在安装时的一些问题(其实基本是

  •   dpark是豆瓣克隆的spark的高效分布式框架,安装测试了下,做个笔记 1 下载:git clone https://github.com/douban/dpark.git  2 进入dpark目录运行:python setup.py install 3 测试代码,使用蒙特卡洛模拟计算π值: #coding:utf-8 import sys import random from dpark

  • 来自于: DPark是一个基于Mesos的集群计算框架(cluster computing framework),是Spark的Python实现版本,类似于MapReduce,但是比其更灵活,可以用Python非常方便地进行分布式计算,并且提供了更多的功能以便更好的进行迭代式计算。 DPark的计算模型是基于两个中心思想的:对分布式数据集的并行计算以及一些有限的可以在计算过程中、从不同机器访问的共

 相关资料
  • 一、MapReduce概述 Hadoop MapReduce 是一个分布式计算框架,用于编写批处理应用程序。编写好的程序可以提交到 Hadoop 集群上用于并行处理大规模的数据集。 MapReduce 作业通过将输入的数据集拆分为独立的块,这些块由 map 以并行的方式处理,框架对 map 的输出进行排序,然后输入到 reduce 中。MapReduce 框架专门用于 <key,value> 键值

  • 类型 实现框架 应用场景 批处理 MapReduce 微批处理 Spark Streaming 实时流计算 Storm

  • 其于职业介绍所、工头、工人、工作模型的分布式计算框架。 职业介绍所有两种,一种是本地职业介绍所,一种是远程职业介绍所。顾名思义,本地职业介绍所就是在当前计算机上的,远程职业介绍所用于连接到远程职业介绍所的。 工人、工头都可以加入到职业介绍所,所以加到本地或远程种业介绍所都是可以的。 在同一个职业介绍所中,具有同样类型的工人、工头和工作都存在的时候,工作就可以被安排下去执行。当然,有两种安排方式,一

  • 本章将重点介绍如何开始使用分布式TensorFlow。目的是帮助开发人员了解重复出现的基本分布式TF概念,例如TF服务器。我们将使用Jupyter Notebook来评估分布式TensorFlow。使用TensorFlow实现分布式计算如下所述 - 第1步 - 为分布式计算导入必需的模块 - 第2步 - 使用一个节点创建TensorFlow集群。让这个节点负责一个名称为“worker”的作业,并在

  • 在介绍GraphX之前,我们需要先了解分布式图计算框架。简言之,分布式图框架就是将大型图的各种操作封装成接口,让分布式存储、并行计算等复杂问题对上层透明,从而使工程师将焦点放在图相关的模型设计和使用上,而不用关心底层的实现细节。 分布式图框架的实现需要考虑两个问题,第一是怎样切分图以更好的计算和保存;第二是采用什么图计算模型。下面分别介绍这两个问题。 1 图切分方式 图的切分总体上说有点切分和边切

  • 主要内容:1.RPC流水线工程,2.RPC 技术选型,3.如何设计 RPC1.RPC流水线工程 ① Client以本地调用的方式调用服务 ② Client Stub接收到调用后,把服务调用相关信息组装成需要网络传输的消息体,并找到服务地址(host:port),对消息进行编码后交给Connector进行发送 ③ Connector通过网络通道发送消息给Acceptor ④ Acceptor接收到消息后交给Server Stub ⑤ Server Stub对消息进行解码,

  • 主要内容:一、从一个新闻门户网站案例引入,二、推算一下你需要分析多少条数据?,三、黄金搭档:分布式存储+分布式计算这篇文章聊一个话题:什么是分布式计算系统? 一、从一个新闻门户网站案例引入 现在很多同学经常会看到一些名词,比如分布式服务框架,分布式系统,分布式存储系统,分布式消息系统。 但是有些经验尚浅的同学,可能都很容易被这些名词给搞晕。所以这篇文章就对“分布式计算系统”这个概念做一个科普类的分析。 如果你要理解啥是分布式计算,就必须先得理解啥是分布式存储,现在我们从一个小例子来引入。 比如说

  • 如何计算大的皮尔逊互相关矩阵( 更新:我读了阿帕奇火花的实现 但对我来说,看起来所有的计算都发生在一个节点上,而不是真正意义上的分布式。 请在这里放一些光。我还尝试在3节点火花群集上执行它,下面是屏幕截图: 正如您从第二张图中看到的,数据在一个节点上被拉起,然后进行计算。我在这里对吗?