Apache Mahout 是 Apache Software Foundation (ASF) 开发的一个全新的开源项目,其主要目标是创建一些可伸缩的机器学习算法,供开发人员在 Apache 在许可下免费使用。该项目已经发展到了它的最二个年头,目前只有一个公共发行版。Mahout 包含许多实现,包括集群、分类、CP 和进化程序。此外,通过使用 Apache Hadoop 库,Mahout 可以有效地扩展到云中。
Mahout 项目是由 Apache Lucene(开源搜索)社区中对机器学习感兴趣的一些成员发起的,他们希望建立一个可靠、文档翔实、可伸缩的项目,在其中实现一些常见的用于集群和分类 的机器学习算法。该社区最初基于 Ngetal. 的文章 “Map-Reduce for Machine Learning on Multicore”,但此后在发展中又并入了更多广泛的机器学习方法。
Mahout 的目标还包括:
建立一个用户和贡献者社区,使代码不必依赖于特定贡献者的参与或任何特定公司和大学的资金。
专注于实际用例,这与高新技术研究及未经验证的技巧相反。
提供高质量文章和示例。
最近,我有一个有趣的问题要解决:如何使用自动化对不同来源的文本进行分类? 前一段时间,我读到一个有关该项目以及许多其他文本分析工作的项目– Apache Mahout 。 尽管它不是一个非常成熟的版本(当前版本为0.4 ),但它功能强大且可扩展。 在另一个出色的项目Apache Hadoop的基础上 ,它能够分析大量数据集。 因此,我做了一个小项目,以了解Apache Mahout的工作方式。 我
apache mahout 最近,我有一个有趣的问题要解决:如何使用自动化对不同来源的文本进行分类? 前一段时间,我读到一个有关该项目以及许多其他文本分析工作的项目– Apache Mahout 。 尽管它不是一个非常成熟的版本(当前版本为0.4 ),但它非常强大且可扩展。 在另一个出色的项目Apache Hadoop的基础上 ,它能够分析巨大的数据集。 因此,我做了一个小项目,以了解Apache
存档日期:2019年4月18日 | 首次出版:2009年9月8日 一旦具有大量研究预算的学术界和公司的专有领域,从数据和用户输入中学习的智能应用程序变得越来越普遍。 对机器学习技术(如群集,协作过滤和分类)的需求从未如此强烈,无论是在大型人群中寻找共同点还是自动标记大量Web内容。 Apache Mahout项目旨在使构建智能应用程序变得更加轻松快捷。 Mahout的联合创始人Grant Inge
Mahout实现的机器学习算法集: 算法大类 算法名称 中文名称 分类算法 Logistic Regression 逻辑回归 Bayesian 贝叶斯 SVM 支持向量机 Perceptron 感知器算法 Neural Network 神经网络 Random Forests 随机森林 Restricted Boltzmann Machines 有限波尔兹曼机 聚类算
Python 有着海量的可用于数据分析、统计以及机器学习的库,这使得 Python 成为很多数据科学家所选择的语言。 下面我们列出了一些被广泛使用的机器学习及其他数据科学应用的 Python 包。 Scipy 技术栈 Scipy 技术栈由一大批在数据科学中被广泛使用的核心辅助包构成,可用于统计分析与数据可视化。由于其丰富的功能和简单易用的特性,这一技术栈已经被视作实现大多数数据科学应用的必备品了。
主要内容 前言 课程列表 推荐学习路线 数学基础初级 程序语言能力 机器学习课程初级 数学基础中级 机器学习课程中级 推荐书籍列表 机器学习专项领域学习 致谢 前言 我们要求把这些课程的所有Notes,Slides以及作者强烈推荐的论文看懂看明白,并完成所有的老师布置的习题,而推荐的书籍是不做要求的,如果有些书籍是需要看完的,我们会进行额外的说明。 课程列表 课程 机构 参考书 Notes等其他资
机器学习与人工智能学习笔记,包括机器学习、深度学习以及常用开源框架(Tensorflow、PyTorch)等。 机器学习算法 _图片来自scikit-learn_。 机器学习全景图 _图片来自http://www.shivonzilis.com/_。
机器学习与人工智能学习笔记,包括机器学习、深度学习以及常用开源框架(Tensorflow、PyTorch)等。
“三个臭皮匠顶个诸葛亮”。集成学习就是利用了这样的思想,通过把多分类器组合在一起的方式,构建出一个强分类器;这些被组合的分类器被称为基分类器。事实上,随机森林就属于集成学习的范畴。通常,集成学习具有更强的泛化能力,大量弱分类器的存在降低了分类错误率,也对于数据的噪声有很好的包容性。
主要内容:机器学习,深度学习,机器学习与深度学习的区别,机器学习和深度学习的应用人工智能是近几年来最流行的趋势之一。机器学习和深度学习构成了人工智能。下面显示的维恩图解释了机器学习和深度学习的关系 - 机器学习 机器学习是让计算机按照设计和编程的算法行事的科学艺术。许多研究人员认为机器学习是实现人类AI的最佳方式。机器学习包括以下类型的模式 - 监督学习模式 无监督学习模式 深度学习 深度学习是机器学习的一个子领域,其中有关算法的灵感来自大脑的结构和功能,称为人工神经网络。
主要内容:数据量,硬件依赖,特色工程在本章中,我们将讨论机器和深度学习概念之间的主要区别。 数据量 机器学习使用不同数量的数据,主要用于少量数据。另一方面,如果数据量迅速增加,深度学习可以有效地工作。下图描绘了机器学习和深度学习在数据量方面的工作 - 硬件依赖 与传统的机器学习算法相反,深度学习算法设计为在很大程度上依赖于高端机器。深度学习算法执行大量矩阵乘法运算,这需要巨大的硬件支持。 特色工程 特征工程是将领域知识放入指定特征的
我已经找了几个小时了,但找不到一个能回答这个问题的东西。我已经创建并发布了一个新的Azure机器学习服务,并创建了一个endpoint。我可以使用Postman REST客户机调用服务,但是通过JavaScript网页访问它会返回一个控制台日志,说明该服务启用了CORS。现在,对于我来说,我想不出如何为Azure机器学习服务禁用CORS。如有任何帮助,不胜感激,谢谢!