当前位置: 首页 > 编程笔记 >

python Gabor滤波器讲解

呼延弘方
2023-03-14
本文向大家介绍python Gabor滤波器讲解,包括了python Gabor滤波器讲解的使用技巧和注意事项,需要的朋友参考一下

解读Gabor滤波器

Fourier 变换是一种信号处理的有力工具,可以将图像从空域转换到频域,并提取到空域上不易提取到的特征。但是Fourier变换缺乏时间和位置的局部信息。
Gabor 变换是一种短时加窗Fourier变换(简单理解起来就是在特定时间窗内做Fourier变换),是短时傅里叶变换中窗函数取为高斯函数时的一种特殊情况。因此,Gabor滤波器可以在频域上不同尺度、不同方向上提取相关的特征。另外,Gabor函数与人眼的作用相仿,所以经常用作纹理识别上,并取得了较好的效果。
在二维空间中,使用一个三角函数(a)(如正弦函数)与一个高斯函数(b)叠加,我们得到了一个Gabor滤波器(c)。如下图所示:

Gabor函数解读

二维Gabor函数的数学表达式如下:

复数表示:

实数部分:

虚数部分:

x'、y' 计算公式:

介绍公式中各个参数的含义:

波长(λ):表示Gabor核函数中余弦函数的波长参数。它的值以像素为单位制定,通常大于等于2,但不能大于输入图像尺寸的1/5.
方向(θ):表示Gabor滤波核中平行条带的方向。有效值为从0°到360°的实数。
相位偏移(ψ):表示Gabor核函数中余弦函数的相位参数。它的取值范围为-180°到180°。其中,0°与180°对应的方程与原点对称,-90°和90°的方程关于原点成中心对称。
长宽比(γ):空间纵横比,决定了Gabor函数形状的椭圆率。当γ=1时,形状是圆形;当γ<1时,形状随着平行条纹方向而拉长。通常该值为0.5.
带宽(b):Gabor滤波器的半响应空间频率带宽b和σ/λ的比率有关,其中σ表示Gabor函数的高斯因子的标准差。三者有如下关系:

σ的值不能直接设置,它仅随带宽b变换。带宽的值必须是正实数,通常为1,此时,标准差和波长的关系为 σ=0.56λ。带宽越小,标准差越大,Gabor形状越大,可见平行条纹数量越多。

python实现Gabor滤波器

# Gabor 滤波器实现
# K_size:Gabor核大小 K_size x K_size
# Sigma : σ
# Gamma: γ
# Lambda:λ
# Psi : ψ
# angle: θ
def Gabor_filter(K_size=111, Sigma=10, Gamma=1.2, Lambda=10, Psi=0, angle=0):
	# get half size
	d = K_size // 2

	# prepare kernel
	gabor = np.zeros((K_size, K_size), dtype=np.float32)

	# each value
	for y in range(K_size):
		for x in range(K_size):
			# distance from center
			px = x - d
			py = y - d

			# degree -> radian
			theta = angle / 180. * np.pi

			# get kernel x
			_x = np.cos(theta) * px + np.sin(theta) * py

			# get kernel y
			_y = -np.sin(theta) * px + np.cos(theta) * py

			# fill kernel
			gabor[y, x] = np.exp(-(_x**2 + Gamma**2 * _y**2) / (2 * Sigma**2)) * np.cos(2*np.pi*_x/Lambda + Psi)

	# kernel normalization
	gabor /= np.sum(np.abs(gabor))

	return gabor

python做出不同角度Gabor滤波器的图像

import cv2
import numpy as np
import matplotlib.pyplot as plt


# Gabor 滤波器实现
# K_size:Gabor核大小 K_size x K_size
# Sigma : σ
# Gamma: γ
# Lambda:λ
# Psi : ψ
# angle: θ
def Gabor_filter(K_size=111, Sigma=10, Gamma=1.2, Lambda=10, Psi=0, angle=0):
	# get half size
	d = K_size // 2

	# prepare kernel
	gabor = np.zeros((K_size, K_size), dtype=np.float32)

	# each value
	for y in range(K_size):
		for x in range(K_size):
			# distance from center
			px = x - d
			py = y - d

			# degree -> radian
			theta = angle / 180. * np.pi

			# get kernel x
			_x = np.cos(theta) * px + np.sin(theta) * py

			# get kernel y
			_y = -np.sin(theta) * px + np.cos(theta) * py

			# fill kernel
			gabor[y, x] = np.exp(-(_x**2 + Gamma**2 * _y**2) / (2 * Sigma**2)) * np.cos(2*np.pi*_x/Lambda + Psi)

	# kernel normalization
	gabor /= np.sum(np.abs(gabor))

	return gabor


# define each angle
As = [0, 45, 90, 135]

# prepare pyplot
plt.subplots_adjust(left=0, right=1, top=1, bottom=0, hspace=0, wspace=0.2)

# each angle
for i, A in enumerate(As):
 # get gabor kernel
 gabor = Gabor_filter(K_size=111, Sigma=10, Gamma=1.2, Lambda=10, Psi=0, angle=A)

 # normalize to [0, 255]
 out = gabor - np.min(gabor)
 out /= np.max(out)
 out *= 255
 
 out = out.astype(np.uint8)
 plt.subplot(1, 4, i+1)
 plt.imshow(out, cmap='gray')
 plt.axis('off')
 plt.title("Angle "+str(A))

plt.savefig("out.png")
plt.show()

实验输出Gabor滤波器图像

opencv(python)中使用Gabor滤波器

函数原型:

retval=cv.getGaborKernel(ksize, sigma, theta, lambd, gamma[, psi[, ktype]])

函数使用举例

import numpy as np 
import cv2 as cv 

# retval = cv.getGaborKernel(ksize, sigma, theta, lambd, gamma[, psi[, ktype]])
# Ksize 是一个元组
retval = cv.getGaborKernel(ksize=(111,111), sigma=10, theta=60, lambd=10, gamma=1.2)
image1 = cv.imread('../paojie.jpg')
# dst	=	cv.filter2D(src, ddepth, kernel[, dst[, anchor[, delta[, borderType]]]])
result = cv.filter2D(image1,-1,retval)

cv.imshow('result',result)
cv.waitKey(0)
cv.destroyAllWindows()

实验结果:


参考:
python实现Gabor滤波器
Gabor滤波器参数详解
Gabor滤波器原理及opencv中的实现

到此这篇关于python Gabor滤波器讲解的文章就介绍到这了,更多相关Gabor滤波器内容请搜索小牛知识库以前的文章或继续浏览下面的相关文章希望大家以后多多支持小牛知识库!

 类似资料:
  • 我对验证FIR滤波器感兴趣。我已经实现了一个移动平均FIR滤波器,并编写了几个刺激来验证。 第一个刺激是一个正弦波,我希望滤波器按原样通过。档案员有。第二个刺激,我只传递一个冲动,并期望协效出现在输出上。这是我实际看到的。 然而,我觉得有两个问题需要注意。首先,不能依赖于波形形状来判断滤波器是否工作。我必须有可量化的值,并使用它作为一个基础,以得出结论,如果过滤器是工作的。例如。信噪比... 以下

  • 我有个问题。在常见的购物车网站有功能搜索产品与多个过滤器。例如,我正在搜索运动装备与一些过滤器,如: > 制造商 [x]耐克 阿迪达斯 茵宝 选项 尺寸 [x]s [x]M L [x]白色 黄色 红色 [x]蓝色 这是我的地图 部分测试数据 有了这个查询,一切都很好 但是,如果我在选项过滤器中添加更多的条件,我没有得到结果 我不知道我在映射或查询中是否错了,或者您能告诉我在这种情况下创建映射的最佳

  • 我应用以下滤波器来去除信号上的50Hz净噪声: 我用Q玩过,但它不够好。

  • 主要内容:实例,实例,实例,实例,实例积分梳状滤波器(CIC,Cascaded Integrator Comb),一般用于数字下变频(DDC)和数字上变频(DUC)系统。CIC 滤波器结构简单,没有乘法器,只有加法器、积分器和寄存器,资源消耗少,运算速率高,可实现高速滤波,常用在输入采样率最高的第一级,在多速率信号处理系统中具有着广泛应用。 DDC 原理 DDC 工作原理 DDC 主要由本地振荡器(NCO) 、混频器、滤波器等组成,如

  • 本文向大家介绍叙述GABOR滤波器原理?相关面试题,主要包含被问及叙述GABOR滤波器原理?时的应答技巧和注意事项,需要的朋友参考一下 使用一个三角函数(如正弦函数)与一个高斯函数叠加我们就得到了一个Gabor滤波器。Gabor滤波器可以抽取空间局部频度特征,是一种有效的纹理检测工具。 附:图像的空域是指二维坐标系上的操作,频域指的是图像经过傅里叶变换后的频谱。在频率域中,高频分量表示图像中灰度变

  • 我想过滤掉具有“c2”列前3个字符的记录,无论是“MSL”还是“HCP”。 所以输出应该如下所示。 有谁能帮忙吗? 我知道df。过滤器($c2.rlike(“MSL”))--用于选择记录,但如何排除记录? 版本:Spark 1.6.2 Scala:2.10