使用神经网络进行样本训练,要实现随机梯度下降算法。这里我根据麦子学院彭亮老师的讲解,总结如下,(神经网络的结构在另一篇博客中已经定义):
def SGD(self, training_data, epochs, mini_batch_size, eta, test_data=None): if test_data: n_test = len(test_data)#有多少个测试集 n = len(training_data) for j in xrange(epochs): random.shuffle(training_data) mini_batches = [ training_data[k:k+mini_batch_size] for k in xrange(0,n,mini_batch_size)] for mini_batch in mini_batches: self.update_mini_batch(mini_batch, eta) if test_data: print "Epoch {0}: {1}/{2}".format(j, self.evaluate(test_data),n_test) else: print "Epoch {0} complete".format(j)
其中training_data是训练集,是由很多的tuples(元组)组成。每一个元组(x,y)代表一个实例,x是图像的向量表示,y是图像的类别。
epochs表示训练多少轮。
mini_batch_size表示每一次训练的实例个数。
eta表示学习率。
test_data表示测试集。
比较重要的函数是self.update_mini_batch,他是更新权重和偏置的关键函数,接下来就定义这个函数。
def update_mini_batch(self, mini_batch,eta): nabla_b = [np.zeros(b.shape) for b in self.biases] nabla_w = [np.zeros(w.shape) for w in self.weights] for x,y in mini_batch: delta_nabla_b, delta_nable_w = self.backprop(x,y)#目标函数对b和w的偏导数 nabla_b = [nb+dnb for nb,dnb in zip(nabla_b,delta_nabla_b)] nabla_w = [nw+dnw for nw,dnw in zip(nabla_w,delta_nabla_w)]#累加b和w #最终更新权重为 self.weights = [w-(eta/len(mini_batch))*nw for w, nw in zip(self.weights, nabla_w)] self.baises = [b-(eta/len(mini_batch))*nb for b, nb in zip(self.baises, nabla_b)]
这个update_mini_batch函数根据你传入的一些数据进行更新神经网络的权重和偏置。
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持小牛知识库。
在本节中,我们将介绍梯度下降(gradient descent)的工作原理。虽然梯度下降在深度学习中很少被直接使用,但理解梯度的意义以及沿着梯度反方向更新自变量可能降低目标函数值的原因是学习后续优化算法的基础。随后,我们将引出随机梯度下降(stochastic gradient descent)。 一维梯度下降 我们先以简单的一维梯度下降为例,解释梯度下降算法可能降低目标函数值的原因。假设连续可导
本文向大家介绍随机梯度下降法?相关面试题,主要包含被问及随机梯度下降法?时的应答技巧和注意事项,需要的朋友参考一下 最小化每个样本的损失函数,迭代更新更快,但总体上是朝着整体最优前进的,与批量梯度下降的关系: 牛顿法 利用损失函数的二阶导数,收敛更快,不再是限于当前歩最优,有了往后看的整体概念,不过也没有整体的概念,只是在局部上更加细致,不过计算比较复杂,因为需要求解海森矩阵的逆矩阵比较复杂
校验者: @A 翻译者: @L 校验者: @HelloSilicat @A 翻译者: @L 随机梯度下降(SGD) 是一种简单但又非常高效的方法,主要用于凸损失函数下线性分类器的判别式学习,例如(线性) 支持向量机 和 Logistic 回归 。 尽管 SGD 在机器学习社区已经存在了很长时间, 但是最近在 large-scale learning (大规模学习)方面 SGD 获得了相当大的关注。
在每一次迭代中,梯度下降使用整个训练数据集来计算梯度,因此它有时也被称为批量梯度下降(batch gradient descent)。而随机梯度下降在每次迭代中只随机采样一个样本来计算梯度。正如我们在前几章中所看到的,我们还可以在每轮迭代中随机均匀采样多个样本来组成一个小批量,然后使用这个小批量来计算梯度。下面就来描述小批量随机梯度下降。 设目标函数$f(\boldsymbol{x}): \mat
本文向大家介绍Spark MLlib随机梯度下降法概述与实例,包括了Spark MLlib随机梯度下降法概述与实例的使用技巧和注意事项,需要的朋友参考一下 机器学习算法中回归算法有很多,例如神经网络回归算法、蚁群回归算法,支持向量机回归算法等,其中也包括本篇文章要讲述的梯度下降算法,本篇文章将主要讲解其基本原理以及基于Spark MLlib进行实例示范,不足之处请多多指教。 梯度下降算法包含多种不
在求解机器学习算法的模型参数,即无约束优化问题时,梯度下降(Gradient Descent)是最常采用的方法之一,另一种常用的方法是最小二乘法。这里就对梯度下降法做一个完整的总结。 1. 梯度 在微积分里面,对多元函数的参数求∂偏导数,把求得的各个参数的偏导数以向量的形式写出来,就是梯度。比如函数f(x,y), 分别对x,y求偏导数,求得的梯度向量就是$$left ( frac{partial
在训练机器学习模型时,首先对权重和偏差进行初始猜测,然后反复调整这些猜测,直到获得损失可能最低的权重和偏差为止(即模型收敛)。 而梯度下降是机器学习中最常用的计算代价函数的方法,它只需要计算损失函数的一阶导数。 假设 h(theta) 为目标函数,而 J(theta) 为损失函数, 损失函数的梯度(即偏导数)为 按参数 theta 的梯度负方向,来更新 theta,即梯度下降算法为 mini-ba
迭代与梯度下降求解 求导解法在复杂实际问题中很难计算。迭代法通过从一个初始估计出发寻找一系列近似解来解决优化问题。其基本形式如下