当前位置: 首页 > 编程笔记 >

python dlib人脸识别代码实例

颜嘉誉
2023-03-14
本文向大家介绍python dlib人脸识别代码实例,包括了python dlib人脸识别代码实例的使用技巧和注意事项,需要的朋友参考一下

本文实例为大家分享了python dlib人脸识别的具体代码,供大家参考,具体内容如下

import matplotlib.pyplot as plt
import dlib
import numpy as np
import glob
import re
 
#正脸检测器
detector=dlib.get_frontal_face_detector()
#脸部关键形态检测器
sp=dlib.shape_predictor(r"D:\LB\JAVASCRIPT\shape_predictor_68_face_landmarks.dat")
#人脸识别模型
facerec = dlib.face_recognition_model_v1(r"D:\LB\JAVASCRIPT\dlib_face_recognition_resnet_model_v1.dat")
 
#候选人脸部描述向量集
descriptors=[]
 
photo_locations=[]
 
for photo in glob.glob(r'D:\LB\JAVASCRIPT\faces\*.jpg'):
  photo_locations.append(photo)
  img=plt.imread(photo)
  img=np.array(img)
  
  #开始检测人脸
  dets=detector(img,1)
  
  for k,d in enumerate(dets):
    #检测每张照片中人脸的特征
    shape=sp(img,d)
    face_descriptor=facerec.compute_face_descriptor(img,shape)
    v=np.array(face_descriptor)
    descriptors.append(v)
		
#输入的待识别的人脸处理方法相同
img=plt.imread(r'D:\test_photo10.jpg')
img=np.array(img)
dets=detector(img,1)
#计算输入人脸和已有人脸之间的差异程度(比如用欧式距离来衡量)
differences=[]
for k,d in enumerate(dets):
  shape=sp(img,d)
  face_descriptor=facerec.compute_face_descriptor(img,shape)
  d_test=np.array(face_descriptor)
  
  #计算输入人脸和所有已有人脸描述向量的欧氏距离
  for i in descriptors:
    distance=np.linalg.norm(i-d_test)
    differences.append(distance)
 
#按欧式距离排序 欧式距离最小的就是匹配的人脸
candidate_count=len(photo_locations)
candidates_dict=dict(zip(photo_locations,differences))
candidates_dict_sorted=sorted(candidates_dict.items(),key=lambda x:x[1])
 
#matplotlib要正确显示中文需要设置
plt.rcParams['font.family'] = ['sans-serif']
plt.rcParams['font.sans-serif'] = ['SimHei']
 
plt.rcParams['figure.figsize'] = (20.0, 70.0) 
 
ax=plt.subplot(candidate_count+1,4,1)
ax.set_title("输入的人脸")
ax.imshow(img)
 
for i,(photo,distance) in enumerate(candidates_dict_sorted):
  img=plt.imread(photo)
  
  face_name=""
  photo_name=re.search(r'([^\\]*)\.jpg$',photo)
  if photo_name:
    face_name=photo_name[1]
    
  ax=plt.subplot(candidate_count+1,4,i+2)
  ax.set_xticks([])
  ax.set_yticks([])
  ax.spines['top'].set_visible(False)
  ax.spines['right'].set_visible(False)
  ax.spines['bottom'].set_visible(False)
  ax.spines['left'].set_visible(False)
  
  if i==0:
    ax.set_title("最匹配的人脸\n\n"+face_name+"\n\n差异度:"+str(distance))
  else:
    ax.set_title(face_name+"\n\n差异度:"+str(distance))
  ax.imshow(img)
 
plt.show()

以上所述是小编给大家介绍的python dlib人脸识别详解整合,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对小牛知识库网站的支持!

 类似资料:
  • 使用ML Kit的人脸识别API,您可以检测图像中的人脸并识别关键面部特征。 借助人脸识别功能,您可以获取所需的信息,以执行修饰自拍和美化人像等任务或从用户照片中生成头像。由于ML Kit可以执行实时的人脸识别,因此您可以将其用于视频聊天或会对玩家表情进行响应的游戏等应用程序。 iOS Android 核心功能 识别和定位面部特征 获取检测到的每个人脸的眼睛,耳朵,脸颊,鼻子和嘴巴的坐标。 识别面

  • 1.1. 1.FACE SDK集成 1.2. 2. 接口说明及示例 1.2.1. 2.0 人脸检测参数配置: 1.2.2. 2.1 单帧图片检测: 1.2.3. 2.2 相机预览人脸检测: 1.2.4. 2.3 人脸数据库操作: Version:facelib.aar 1.1. 1.FACE SDK集成 添加三方依赖库: dependencies { compile 'com.rokid:

  • 本文向大家介绍android实现人脸识别技术的示例代码,包括了android实现人脸识别技术的示例代码的使用技巧和注意事项,需要的朋友参考一下 1.前沿 人工智能时代快速来临,其中人脸识别是当前比较热门的技术,在国内也越来越多的运用,例如刷脸打卡,刷脸APP,身份识别,人脸门禁等。当前的人脸识别技术分为WEBAPI和SDK调用两种方式,WEBAPI需要实时联网,SDK调用可以离线使用。 本次使用的

  • DWZ 百度人脸识别模块 dwzBaiduFaceLive 百度人脸识别模块【apicloud】 功能介绍 https://www.apicloud.com/mod_detail/dwzBaiduFaceLive 封装了新版百度开放平台的人脸识别采集 SDK: 包含活体动作 faceLiveness 不包含活体动作 faceDetect 考虑灵活度问题,本模块只作人脸采集,人脸识别成功后生成 ba

  • DWZ 百度人脸识别插件 dwz-BaiduFaceLive 百度人脸识别插件【dcloud】 功能介绍 https://ext.dcloud.net.cn/plugin?id=4794 封装了新版百度开放平台的人脸识别采集 SDK: 包含活体动作 faceLiveness 不包含活体动作 faceDetect 考虑灵活度问题,本插件只作人脸采集,人脸识别成功后生成 base64 头像图片,开发者

  • 请求URL /api/v1/vision/face-comparison 请求方法 POST Header Content-Type application/json body请求体 { "FirstFace": { "FaceImage": { "Content": "base64 image string" }, },

  • match_faces(self,*args,**kwargs)方法 调用人脸对比接口,返回人脸对比的结果 requestsyntax image1 = Image(uri="fds://cnbj2.fds.api.xiaomi.com/vision-test/test_img.jpg") image2 = Image(uri="fds://cnbj2.fds.api.xiaomi.com/vis

  • 更新时间:2019-07-19 10:48:36 节点简介 人脸识别/图像识别/OCR节点属于智能节点,区别在于封装的云市场api功能不同。人脸识别节点主要有人数检测、人脸身份证对比、性别年龄情绪识别等功能。图像识别节点主要有烟雾火焰火灾识别、动物识别、植物识别、植物花卉识别等功能。OCR节点主要有驾驶证识别、车牌识别、身份证识别等功能。 使用场景 如果您需要进行人数检测、人脸身份证对比、性别年龄