1.简介:facenet 是基于 TensorFlow 的人脸识别开源库,有兴趣的同学可以扒扒源代码:
https://github.com/davidsandberg/facenet
2.安装和配置 facenet
我们先将 facenet 源代码下载下来:
git clone https://github.com/davidsandberg/facenet.git
在使用 facenet 前,务必安装下列这些库包:
或者直接移动到 facenet 目录下,一键安装
pip install -r requirements.txt
3.下载 LFW 数据集
LFW 是由美国马萨诸塞大学阿姆斯特分校计算机视觉实验室整理的。它包含13233张图片,共5749人,其中4096人只有一张图片,1680人的图片多余一张,每张图片尺寸是250x250 。
下载地址:http://vis-www.cs.umass.edu/lfw/ ->Menu->Download->All images as gzipped tar file
下载完成后,我们将文件解压到 facenet/data/lfw_data/lfw 目录下(没有的话自己建个目录),在 lfw_data 目录下新建一个目录 lfw_160,用来存放裁剪后图片。
4.对图像进行预处理
因为程序中神经网络使用的是谷歌的“inception resnet v1”网络模型,这个模型的输入时160*160的图像,而我们下载的LFW数据集是250*250限像素的图像,所以需要进行图片的预处理。
运行 facenet/src/align/align_dataset_mtcnn.py 来修改图片尺寸大小,加入下列参数
facenet/data/lfw_data/lfw #输入图像文件夹 facenet/data/lfw_data/lfw_160 #输出图像文件夹 --image_size 160 --margin 32 --random_order--gpu_memory_fraction 0.25 #指定裁剪后图像大小(如果不指定,默认的裁剪结果是182*182像素的)
即
python align_dataset_mtcnn.py facenet/data/lfw_data/lfw facenet/data/lfw_data/lfw_160 --image_size 160 --margin 32 --random_order--gpu_memory_fraction 0.25
如果用的是 pycharm,可以在 RUN -> Edit Configurations 下添加参数信息,然后运行 align_dataset_mtcnn.py 文件:
**这里自己运行的时候一直报错提示:No module named 'align'
将 align_dataset_mtcnn.py 移动至 src 文件夹下再运行就不会报错了。
校准后图像大小即变为160 x 160 。
5.评估 Google 预训练模型在数据集中的准确性
facenet提供了两个预训练模型,分别是基于CASIA-WebFace和 VGGFace2人脸库训练的。(由于存储在 Google 网盘中,需要 FQ 下载使用)
GitHub 地址:https://github.com/davidsandberg/facenet
这里我采用的是 CASIA-WebFace 预训练模型,有兴趣了解的小伙伴,可以到CASIA-WebFace 官网看看:
http://www.cbsr.ia.ac.cn/english/CASIA-WebFace-Database.html
将下载好的预训练文件解压到 facenet/src/models目录下:
添加参数
facenet/data/lfw_data/lfw_160 facenet/src/models/20180408-102900
运行 validate_on_lfw.py 文件。
这里我刚开始运行的时候报错:
发现是预训练模型版本太旧,我们在 facenet 上下载最新的CASIA-WebFace 训练库再重新运行即可。
运行结果如下:
可以看到识别精度可以达到 97.7%,其识别准确度还是非常不错的。
但是程序运行完以后虽然最终运行结果正确,但是最后却还是报了个错误:
_2_input_producer: Skipping cancelled enqueue attempt with queue not closed
原因是主线程已经关闭,但是读取数据入队线程还在执行入队。
由于自己对 TensorFlow 线程还不是特别了解,暂时还没有解决这个问题。
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持小牛知识库。
利用CoreImage进行人脸识别,可以判断人脸整体位置,以及两只眼睛和嘴巴的大概位置。并根据人脸范围,对图片进行剪切。 [Code4App.com]
使用ML Kit的人脸识别API,您可以检测图像中的人脸并识别关键面部特征。 借助人脸识别功能,您可以获取所需的信息,以执行修饰自拍和美化人像等任务或从用户照片中生成头像。由于ML Kit可以执行实时的人脸识别,因此您可以将其用于视频聊天或会对玩家表情进行响应的游戏等应用程序。 iOS Android 核心功能 识别和定位面部特征 获取检测到的每个人脸的眼睛,耳朵,脸颊,鼻子和嘴巴的坐标。 识别面
1.1. 1.FACE SDK集成 1.2. 2. 接口说明及示例 1.2.1. 2.0 人脸检测参数配置: 1.2.2. 2.1 单帧图片检测: 1.2.3. 2.2 相机预览人脸检测: 1.2.4. 2.3 人脸数据库操作: Version:facelib.aar 1.1. 1.FACE SDK集成 添加三方依赖库: dependencies { compile 'com.rokid:
本文向大家介绍python使用opencv进行人脸识别,包括了python使用opencv进行人脸识别的使用技巧和注意事项,需要的朋友参考一下 环境 ubuntu 12.04 LTS python 2.7.3 opencv 2.3.1-7 安装依赖 示例代码 转换效果 原图: 转换后 使用感受 对于大部分图像来说,只要是头像是正面的,没有被阻挡,识别基本没问题,准确性还是很高的。 识别效率有点低,
DWZ 百度人脸识别模块 dwzBaiduFaceLive 百度人脸识别模块【apicloud】 功能介绍 https://www.apicloud.com/mod_detail/dwzBaiduFaceLive 封装了新版百度开放平台的人脸识别采集 SDK: 包含活体动作 faceLiveness 不包含活体动作 faceDetect 考虑灵活度问题,本模块只作人脸采集,人脸识别成功后生成 ba
DWZ 百度人脸识别插件 dwz-BaiduFaceLive 百度人脸识别插件【dcloud】 功能介绍 https://ext.dcloud.net.cn/plugin?id=4794 封装了新版百度开放平台的人脸识别采集 SDK: 包含活体动作 faceLiveness 不包含活体动作 faceDetect 考虑灵活度问题,本插件只作人脸采集,人脸识别成功后生成 base64 头像图片,开发者